Home
Class 11
MATHS
" (9) "f(x)=sqrt((x-1)/(x-2{x}))," where...

" (9) "f(x)=sqrt((x-1)/(x-2{x}))," where "{*}" denotes the fractional par "

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

The number of integral values of x in the domain of f(x)=sqrt(3-x)+sqrt(x-1)+log{x}, where {} denotes the fractional part of x, is

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.

The domain of f(x)=sqrt(2{x}^(2)-3{x}+1) where {.} denotes the fractional part in [-1,1]

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x).

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x).