Home
Class 12
MATHS
[2sqrt(pi),quad P=[[(sqrt(3))/(2),(1)/(2...

[2sqrt(pi),quad P=[[(sqrt(3))/(2),(1)/(2)],[-(1)/(2),(sqrt(3))/(2)]],A=[[1,1],[0,1]]],[" MA: "quad Q=PAP^(TT)" ar ox,"P^(TT)theta^(2015)p=pi02]

Promotional Banner

Similar Questions

Explore conceptually related problems

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]] and A=[[1,10,1]] and Q=PAP^(T) and x,=P^(T)Q^(2005)P then x is

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]],A=[[1,10,1]] and Q=PAP^(T), then P^(T)Q^(2013)P=

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]],A=[[1,10,1]] and Q=PAP^(T), then P^(T)Q^(2015)P is

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]],A=[[1,10,1]] and Q=PAP^(T) and X=P^(T)Q^(2005)P, then X equal to:

If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T and X=P^TQ^(2005)P , then X equal to:

If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]] and Q=PAP^T and X=P^TQ^(2005)P , then X equal to:

If P= [[sqrt(3)/2, 1/2],[-1/2 , sqrt(3)/ 2]], A = [[1,1],[0,1]]and Q= PAP^(T) , the ltbr. P^(T)(Q^(2005)) P equal to

P=[[(sqrt(3))/(2),(1)/(2)],[-(1)/(2),(sqrt(3))/(2)]] and A =[[1,1],[0,1]] , Q= PAP^T and P^TQ^(2020)P=[[alpha,gamma],[beta,alpha]] then alpha+beta+gamma

If P = [(((sqrt(3))/2,1/2),(1/2)),(((-1)/2),(sqrt(3))/2)] and A = [(1,1),(0,1)] and Q = PAP^(T), then P^(T) Q^(2005) P is equal to :