Home
Class 12
MATHS
[" let "f(x)=3x^(10)-7x^(8)+5x^(6)-21x^(...

[" let "f(x)=3x^(10)-7x^(8)+5x^(6)-21x^(3)+3x^(2)-7],[265(lim_(x rarr0)(h^(4)+3h^(2))/((f(1-h)-f(1))sin5h))=]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x) =3x ^(10) -7x ^(8) +5x^(6) -21 x ^(3) +3x ^(2) -7 265 (lim _(htoo) (h ^(4) +3h^(2))/((f(1-h) -f (1))sin5h))=

Let f (x) =3x ^(10) -7x ^(8) +5x^(6) -21 x ^(3) +3x ^(2) -7 265 (lim _(htoo) (h ^(4) +3h^(2))/((f(1-h) -f (1))sin5h))=

Let f(x) = 3x^(10) - 7x^(8) + 5x^(6) - 21x^(3) + 3x^(2) - 7 . Then lim_(h rarr 0) (f(1-h)-f(1))/(h^(3) + 3h) equals :

lim_(x rarr0)(3^(5x)-e^(2x))/(sin3x)

lim_(h rarr0)((x+h)^(x+h)-x^(x))/(h)=

lim_(x rarr0)(6x^(3)-5x^(2)-7x+8)

f(x)=3x^(10)7x^(8)+5x^(6)-21x^(3)+3x^(2)7, then is the value of lim_(h rarr0)(f(1-h)-f(1))/(h^(3)+3h) is

lim_(h rarr0)(sin^(2)(x+h)-sin^(2)x)/(h)

lim_(x rarr0)((6^(x)+5^(x)+4^(x)-3^(x+1))/(sin x))