Home
Class 11
MATHS
The tangent at a point P on the hyperbol...

The tangent at a point `P` on the hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=1` meets one of the directrix at `Fdot` If `P F` subtends an angle `theta` at the corresponding focus, then `theta=` `pi/4` (b) `pi/2` (c) `(3pi)/4` (d) `pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)(cottheta)=2\ theta , then theta= +-pi/3 (b) +-pi/4 (c) +-pi/6 (d) none of these

The period of cos5 theta is (a) pi^(2) (b) 2 pi (c) 2 pi/5 (d) pi/3

If theta=sin^(-1){sin(-600o)} , then one of the possible values of theta is pi/3 (b) pi/2 (c) (2pi)/3 (d) (-2pi)/3

If (1-tantheta)/(1+tantheta) = 1/sqrt3 , where theta in (0, pi/2) , then theta = (a) pi/6 (b) pi/4 (c) pi/12 (d) pi/3

P and Q are points on the ellipse x^2/a^2+y^2/b^2 =1 whose center is C. The eccentric angles of P and Q differ by a right angle. If /_PCQ minimum, the eccentric angle of P can be (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/12

The angle of intersection of the curves y=2\ s in^2x and y=cos2\ x at x=pi/6 is pi//4 (b) pi//2 (c) pi//3 (d) pi//6

The sum of all the solutions of cot theta=sin2 theta(theta!=n pi,n integer) 0<=theta<=pi, is (a) (3 pi)/(2) (b) pi (c) 3(pi)/(4) (d) 2 pi

If (3+2i sintheta)/(1-2i sintheta) is a real number and 0lt theta lt 2pi , then theta is a. pi \ b. pi/2 \ c. pi/3 \ d. pi/6

If cos theta+sqrt(3)s int h eta=2, then theta=pi/3b2 pi/3c.4 pi/3d.5 pi/3