Home
Class 12
MATHS
sqrt(1-x^(6))dy=x^(2)dx...

`sqrt(1-x^(6))dy=x^(2)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt((1-x^(6)))+sqrt((1-y^(6)))=a(x^(3)-y^(3)) , a is constant and (dy)/(dx)=f(x,y) sqrt(((1-y^(6))/(1-x^(6)))) , then

If sqrt(1-x^(6))+sqrt(1-y^(6))=a(x^(3)-y^(3)), then prove that (dy)/(dx)=(x^(2))/(y^(2))sqrt((1-y^(6))/(1-x^(6)))

If y=log[x+sqrt((1+x^(2)))], prove that sqrt((1+x^(2)))(dy)/(dx)=1

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

(dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))