Home
Class 10
MATHS
8sqrt((x)/(x+3))-sqrt((x+3)/(x))=2...

`8sqrt((x)/(x+3))-sqrt((x+3)/(x))=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equations. 8 sqrt (x/(x + 3)) - sqrt((x+3)/x) = 2 .

(sqrt(3+x)+sqrt(3-x))/(sqrt(3+x)-sqrt(3-x))=2 then x is equal to

Prove that the following equations has no solutions. (i) sqrt((2x+7))+sqrt((x+4))=0 (ii) sqrt((x-4))=-5 (iii) sqrt((6-x))-sqrt((x-8))=2 (iv) sqrt(-2-x)=root(5)((x-7)) (v) sqrt(x)+sqrt((x+16))=3 (vi) 7sqrt(x)+8sqrt(-x)+15/(x^(3))=98 (vii) sqrt((x-3))-sqrt(x+9)=sqrt((x-1))

lim_(x rarr 5) (sqrt(2x-3)-sqrt(3x-8))/(sqrt(2x-1)-sqrt(3x-6))= _______.

lim_(x rarr a)(sqrt(3a+x)-2sqrt(x))/((sqrt(a+2x)-sqrt(3x)))=(3sqrt(3))/(2)

Show that : Lt_(x to a)(sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrt(x))=(2)/(3 sqrt(3))