Home
Class 10
MATHS
sqrt(x+4)+sqrt(x+20)=2sqrt(x+11)...

`sqrt(x+4)+sqrt(x+20)=2sqrt(x+11)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(x-4)+3=sqrt(x+11)

sqrt(x+5)+sqrt(x-20)=7

sqrt(x+5)+sqrt(20-x)=7

If f(x) = sqrt(x + 2sqrt(2x - 4)) + sqrt(x - 2sqrt(2x - 4)) , then f'(3) = f'(6) =

The value of x+sqrt(x^(2)+sqrt(x^(4)+sqrt(x^(8)+sqrt(x^(16)+cdots))))

Solve for x:sqrt(2x-1)+sqrt(3x-2)=sqrt(4x-3)+sqrt(5x-4)

Prove that the following equations has no solutions. (i) sqrt((2x+7))+sqrt((x+4))=0 (ii) sqrt((x-4))=-5 (iii) sqrt((6-x))-sqrt((x-8))=2 (iv) sqrt(-2-x)=root(5)((x-7)) (v) sqrt(x)+sqrt((x+16))=3 (vi) 7sqrt(x)+8sqrt(-x)+15/(x^(3))=98 (vii) sqrt((x-3))-sqrt(x+9)=sqrt((x-1))