Home
Class 10
MATHS
tan^(2)P-tan^(2)Q=(sin^(2)P-sin^(2)Q)/(c...

`tan^(2)P-tan^(2)Q=(sin^(2)P-sin^(2)Q)/(cos^(2)P*cos^(2)Q)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (cos A)/(cos B)=p,(sin A)/(sin B)=q ,then (p^(2)(q^(2)-1))/(p^(2)-q^(2)) is equal to (A)-cos^(2)A(B)cos^(2)B(C)cos^(2)A(D)sin^(2)B

ABCD is a trapezium such that AB and CD are parallel and BC bot CD . If angleADB = theta, BC = p and CD = q , then AB is equal to (a) ((p^(2)+q^(2))sin theta)/(p cos theta +q sin theta) (b) (p ^(2) + q ^(2)cos theta)/(p cos theta +q sin theta) (c) (p ^(2)+ q^(2))/(p^(2)cos theta +q^(2) sin theta) (d) ((p^(2) +q^(2))sin theta)/((p cos theta + sin theta)^(2))

If p=a cos^(2)theta sin theta and q=a sin^(2)theta cos theta then (((p^(2)+q^(2))^(3))/(p^(2)q^(2)) is

If sec A = x+(1)/(4x) prove that: sec A + tan A = 2x or (1)/(2x) (b) If "tan" theta = (p)/(q) ,show that : (p sin theta - q costheta)/(p"sin"theta+qcostheta)=( p^(2) - q^(2))/(p^(2)+q^(2))

if x=a cos^(3)theta sin^(2)theta and y=a cos^(2)theta sin^(3)theta and ((x^(2)+y^(2))^(p))/((xy)^(q)) is independent of theta, then (A)4p=5q(B)5p=4q(C)p+q=9(D)pq=20

Given that tan alpha and tan beta,x^(2)-px+q=0 then value of sin^(2)(alpha+beta)=(p^(2))/(p^(2)+(1-q)^(2)) (b) (p^(2))/(p^(2)+q^(2))(q^(2))/(p^(2)+(1-q)^(2)) (d) (p^(2))/((p+q)^(2))

If "Cos"^(-1)P/a+"Cos"^(-1)q/b=alpha , then prove that (p^(2))/(a^(2))-(2pq)/(ab).cos alpha+(q^(2))/(b^(2))=sin^(2)alpha

If x=a cos^(3) theta sin^(2) theta, y= a sin^(3) theta cos^(2) theta and ((x^(2)+y^(2))^(p))/((xy)^(q))(p, q, in N) is independent of theta , then

If x=a cos^(3) theta sin^(2) theta,y = a sin^(3) theta cos^(2) theta and ((x^(2)+y^(2))^(p))/((xy)^(q))(p,q in N) is independent of theta , the