Similar Questions
Explore conceptually related problems
Recommended Questions
- Prove that coth(x-y)=(cothx.cothy-1)/(cothy-cothx)
Text Solution
|
- (d)/(dx){(1)/(2)(:coth backslash(x)/(2)-(1)/(6)coth^(3)backslash(x)/(2...
Text Solution
|
- Prove that (coshx)/(1-tanhx)+(sinhx)/(1-cothx)=sinhx+coshx," for "xne0
Text Solution
|
- Prove that coth(x-y)=(cothx.cothy-1)/(cothy-cothx)
Text Solution
|
- The domain of Coth^(-1)2x is
Text Solution
|
- If cosh 2x = 199 , then cothx =
Text Solution
|
- ("cosh x + 1")/("cosh x -1") = "coth "^2x/k, "then k"=
Text Solution
|
- ("cosh x")/("1 -tanhx") + ("sinh x")/( "1 - coth x") =
Text Solution
|
- If coth x = sec theta, then cosech x =
Text Solution
|