Home
Class 11
MATHS
The eccentric angle of a point on the el...

The eccentric angle of a point on the ellipse `(x^2)/4+(y^2)/3=1` at a distance of 5/4 units from the focus on the positive x-axis is `cos^(-1)(3/4)` (b) `pi-cos^(-1)(3/4)` `pi+cos^(-1)(3/4)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The eccentric angle of a point on the ellipse x^2/6 + y^2/2 = 1 whose distance from the centre of the ellipse is 2, is (A) pi/4 (B) 7pi/6 (C) 3pi/2 (D) 5pi/3

The eccentricity of the ellipse 5x^(2)+9y^(2)=1 is 2/3 b.3/4 c.4/5 d.1/2

cos^(-1)((3)/(5))+cos^(-1)((4)/(5))=(pi)/(2)

The distance of a point on the ellipse (x^(2))/(6)+(y^(2))/(2)=1 from the center is 2. Then the eccentric angle of the point is (pi)/(4) (b) (3 pi)/(4) (c) (5 pi)/(6) (d) (pi)/(6)

If x>0,cos^(-1)((3)/(x))=(pi)/(2)-cos^(-1)((4)/(x)) then x equals

The value of the integral int_(-(3 pi)/(4))^((pi)/(4))((sin x+cos x)/(e^(x-(pi)/(4))+1))dx(A)0(B)1(C)2(D) none of these

If cos^(-1)(2/(3x))+cos^(-1)(3/(4x))=(pi)/2(xgt3/4) then x is equal to

cos^(-1)(cos(2cot^(-1)(sqrt(2)-1))) is equal to sqrt(2)-1( b) (pi)/(4)(c)(3 pi)/(4) (d) none of these

Show that 1/2 cos^-1 (3/5) = tan^-1 (1/2) =pi/4 - 1/2 cos^-1( 4/5)