Home
Class 12
MATHS
int (e^(5log(e)x)-e^(4log(e)x))/(e^(3log...

`int (e^(5log_(e)x)-e^(4log_(e)x))/(e^(3log_(e)x)-e^(2log_(e)x))dx ` का मान ज्ञात कीजिए |

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int(e^(5log_(e)x)+e^(4log_(e)x))/(e^(3log_(e)x)+e^(2log_(e)x))dx is

int(e^(6log_(e)x)-e^(5log_(e)x))/(e^(4log_(e)xe^(3log_(e)x))) backslash dx

Evaluate: int(e^(5(log)_(e)x)-e^(4(log)_(e)x))/(e^(3(log)_(e)x-e^(2log x)))dx

Evaluate: int(e^(5(log)_e x)-e^(4(log)_ex))/(e^(3(log)_e x)-e^(2logx))dx

I=int(log_(e)(log_(e)x))/(x(log_(e)x))dx

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx