Home
Class 12
MATHS
If lim(x->oo)((1+a^3)+8e^(1/ x))/(1+(1-b...

If `lim_(x->oo)((1+a^3)+8e^(1/ x))/(1+(1-b^3)e^(1/ x))=2,` then there exists

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to0) ((1+a^(3))+8e^(1//x))/(1+(1-b^(3))e^(1//x))=2 " then "-

If lim_(x rarr oo)((1+a^(3))+8e^((1)/(x)))/(1+(1-b^(3))e^((1)/(x)))=2, then there

If ("lim")_(xvec0)((1+a^3)+8e^(1/x))/(1+(2+b+b^2)e^(1/x))=2, where a ,b in R , then the possible ordered pair (a,b) is (2,-2) (b) (1,-2) (1,1) (d) (-1,1)

underset(x to0)(lim)((1+a^(3))+8e^(1//x))/(1+(1-b^(3))e^(1//x))=2 then value of a and b are?

lim_(x->oo)(1-x+x.e^(1/n))^n

lim_(x rarr oo)(e^((1)/(x))-1))

lim_(x rarr oo)(1+x^(2))^(e^(-x))

If lim_(x rarr oo)(1+(a)/(x)+(b)/(x^(2)))^(3x)=e^(4) then the values of a and b are

lim_(x rarr oo)(1+e^(-x))^(e^(x))=