Home
Class 11
MATHS
The equation (x-alpha)^2+(y-beta)^2=k(l ...

The equation `(x-alpha)^2+(y-beta)^2=k(l x+m y+n)^2` represents a parabola for `k<(l^2+m^2)^(-1)` an ellipse for `0(1^2+m^2)^(-1)` a point circle for `k=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation (x-alpha)^(2)+(y-beta)^(2)=k(lx+my+n)^(2) represents

The equation (13x -1)^(2) + (13y -1)^(2) =k (5x-12y+1)^(2) will represent a parabola, if

The equation (x^2)/(1-k)-(y^2)/(1+k)=1, k gt 1 represents s

The equation x^(2)+k_(1)y^(2)+k_(2)xy=0 represents a pair of perpendicular lines if

If the equation 2x^(2)+4xy-2y^(2)+4x+8y+k=0 represents a pair of line, then k=

If the equation x^(2)+3xy+2y^(2)+x-y+k=0 represents a pair of line, then k=

If the equation K(x^(2)+y^(2))=(3x-y)^(2) represents a pair of coincident lines, then k=

The equation |sqrt(x^(2)+(y-1)^(2))-sqrt(x^(2)+(y+1)^(2))|=K will represent a hyperbola for K in(0,2)(b)K in(-2,1)K in(1,oo)(d)K in(0,oo)

If the equation (k+1)x^(2)-6xy+(k-7)y^(2)=0 represents a pair of coincident lines, If k=