Home
Class 11
MATHS
If values of a, for which the line y=ax+...

If values of a, for which the line `y=ax+2sqrt(5)` touches the hyperbola `16x^2-9y^2 = 144` are the roots of the equation `x^2-(a_1+b_1)x-4=0`, then the values of `a_1+b_1` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Values of m, for which the line y=mx+2sqrt5 is a tangent to the hyperbola 16x^(2)-9y^(2)=144 , are the roots of the equation x^(2)-(a+b)x-4=0 , then the value of (a+b) is equal to

The values of lamda for which the line y=x+ lamda touches the ellipse 9x^(2)+16y^(2)=144 , are

For what value of lambda does the line y=2x+lambda touches the hyperbola 16x^(2)-9y^(2)=144 ?

If 1 is a zero of the polynomial p(x)=ax^(2)3(a1)x-1, then find the value of a.

If the line y=3x+lambda touches the hyperbola 9x^(2)-5y^(2)=45 , then the value of lambda is

The line 4sqrt(2x)-5y=40 touches the hyperbola (x^(2))/(100)-(y^(2)_)/(64) =1 at the point

If the straight line 2x+sqrt(2)y+n=0 touches the hyperbola (x^(2))/(9)-(y^(2))/(16)=1, then find the value of n.