Home
Class 11
MATHS
The sides A Ca n dA B of a A B C touch ...

The sides `A Ca n dA B` of a ` A B C` touch the conjugate hyperbola of the hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=1` . If the vertex `A` lies on the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` , then the side `B C` must touch parabola (b) circle hyperbola (d) ellipse

Promotional Banner

Similar Questions

Explore conceptually related problems

Equation of conjugate hyperbola w.r.t (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 is

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

The point (at^(2),2bt) lies on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 for

If hyperbola (x^(2))/(b^(2))-(y^(2))/(a^(2))=1 passes through the focus of ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, then find the eccentricity of hyperbola.

The eccentricity of the conjugate hyperbola of the hyperbola x^(2)-3y^(2)=1 is 2(b)2sqrt(3)(c)4 (d) (4)/(5)

Let the eccentricity of the hyperbola (x ^(2))/(a ^(2))- (y ^(3))/(b ^(2)) =1 be reciprocal to that of the ellipse x ^(2) + 9y ^(2) =9, then the ratio a ^(2) : b ^(2) equals

If the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=-1 is (5)/(4) , then b^(2) is equal to

Length of common tangents to the hyperbolas (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and (y^(2))/(a^(2))-(x^(2))/(b^(2))=1 is