Home
Class 11
MATHS
The locus of the foot of the perpendicul...

The locus of the foot of the perpendicular from the center of the hyperbola `x y=1` on a variable tangent is `(x^2-y^2)=4x y` (b) `(x^2-y^2)=1/9` `(x^2-y^2)=7/(144)` (d) `(x^2-y^2)=1/(16)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the foot of the perpendicular drawn from the centre on any tangent to the ellipse x^2/25+y^2/16=1 is:

The locus of the foot of the perpendicular drawn from the origin to any tangent to the hyperbola (x^(2))/(36)-(y^(2))/(16)=1 is

Locus of the feet of the perpendiculars drawn from either foci on a variable tangent to the hyperbola 16y^(2)-9x^(2)=1 is

The locus of the foot of perpendicular drawn from the centre of the ellipse x^2+""3y^2=""6 on any tangent to it is (1) (x^2-y^2)^2=""6x^2+""2y^2 (2) (x^2-y^2)^2=""6x^2-2y^2 (3) (x^2+y^2)^2=""6x^2+""2y^2 (4) (x^2+y^2)^2=""6x^2-2y^2

Find the locus of the foot of the perpendicular drawn from the point (7,0) to any tangent of x^(2)+y^(2)-2x+4y=0

The locus of the foot of the perpendicular from the foci an any tangent to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

Find the locus of the foot of the perpendicular drawn from the center upon any tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

Locus of feet of perpendiculars drawn from either foci on a variable tangent to hyperbola 16y^(2)-9x^(2)=1 is (A)x^(2)+y^(2)=9(B)x^(2)+y^(2)=(1)/(9)(C)x^(2)+y^(2)=(7)/(144)(D)x^(2)+y^(2)=(1)/(16)

Show that the locus of the foot of the perpendicular drawn from focus to a tangent to the hyperbola x^2/a^2 - y^2/b^2 = 1 is x^2 + y^2 = a^2 .