Home
Class 12
MATHS
The lines (x-2)/1=(y-3)/1=(z-4)/(-k)a n ...

The lines `(x-2)/1=(y-3)/1=(z-4)/(-k)a n d(x-1)/k=(y-4)/2=(z-5)/1` are coplanar if a. `k=1or-1` b. `k=0or-3` c. `k=3or-3` d. `k=0or-1`

A

k=1 or -1

B

k=0 or -3

C

k=3 or -3

D

k=0 or -1

Text Solution

Verified by Experts

The lines `(x-2)/(1)=(y-3)/(1)=(z-4)/(-k)" "(i)`
and `(x-1)/(k)=(y-4)/(2)=(z-5)/(1)" "(ii)`
are coplanar if `|[x_(2)-x_(1),y_(2)-y_(1),z_(2)-z_(1)],[l_(1),m_(1),n_(1)],[l_(2),m_(1),n_(2)]|=0`
or `|[1,-1,-1],[1,1,-k],[k,2,1]|=0`
or `k^(2)+3k=0`
`impliesk=0or-3`
Promotional Banner

Similar Questions

Explore conceptually related problems

The lines (x-2)/1=(y-3)/2=(z-4)/(-2k) and (x-1)/k=(y-2)/3=(z-6)/1 are coplanar if

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(1)=(z-5)/(1) are coplanar if k=?

The lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar if (A) k=0 or -1 (B) k=1 or -1 (C) k=0 or -3 (D) k=3or-3

The lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar if (A) k=3 or -3 (B) k=0 or -1 (C) k=1 or -1 (D) k=0 or -3

If the lines (x-2)/(1)=(y-3)/(1)=(x-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar,then k can have