Home
Class 12
MATHS
यदि sin^(-1) x + 2cos^(-1) x = sin^(-1) ...

यदि `sin^(-1) x + 2cos^(-1) x = sin^(-1) y`, तो x बराबर है -

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1) x + sin^(-1)y = pi//2 and cos^(-1) x - cos^(-1) y = 0 , then value x and y respectively

sin^-1 x+ sin^-1 y = sin^-1[x 1-y^2 + y 1- x^2]

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

If sin^(-1) x + cos ^(-1) y = (2pi)/5 , then cos^(-1) x + sin ^(-1) y is

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , then find sin^(-1) x + sin^(-1) y + sin^(-1) z

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y