Home
Class 12
MATHS
The value of sin^(-1)((12)/(13)) - sin ^...

The value of `sin^(-1)((12)/(13)) - sin ^(-1)((3)/(5))` is equal to (A) `pi-sin ^(-1) ((63)/(65))` (B) `(pi)/(2) - sin ^(-1)((56)/(65))` (C) `(pi)/(2) - cos ^(-1)((9)/(65)) ` (D) `pi - cos ^(-1)((3)/(65))`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin(2sin^(-1)sqrt((63)/(65)))=

sin (2 sin^(-1) sqrt((63)/(65)))=

Prove that sin^(-1)((4)/(5)) +sin^(-1)((5)/(13)) +sin^(-1)((16)/(65)) =(pi)/(2)

sin(2 sin^(-1) sqrt(63/65)) =

cos^(-1)((63)/(65))+2tan^(-1)((1)/(5))=sin^(-1)(3/5)

Prove that: sin^(-1)((4)/(5))+sin^(-1)((5)/(13))+sin^(-1)((16)/(65))=(pi)/(2)

Prove that: sin^(-1)((3)/(5))+cos^(-1)((12)/(13))=sin^(-1)((56)/(65))

The value of tan^(-1)(1)+cos^(-1)(-(1)/(2))+sin^(-1)(-(1)/(2)) is equal to (pi)/(4)b*(5 pi)/(12)c*(3 pi)/(4)d.(13 pi)/(12)

show that sin ^(-1)""(4)/(5) +sin ^(-1)""(5)/(13) +sin ^(-1)""(16)/(65) =(pi)/(2)