Home
Class 12
MATHS
L1a n dL2 and two lines whose vector equ...

`L_1a n dL_2` and two lines whose vector equations are `L_1: vec r=lambda((costheta+sqrt(3)) hat i(sqrt(2)sintheta) hat j+(costheta-sqrt(3)) hat k)` `L_2: vec r=mu(a hat i+b hat j+c hat k)` , where `lambdaa n dmu` are scalars and `alpha` is the acute angel between `L_1a n dL_2dot` If the angel `alpha` is independent of `theta,` then the value of `alpha` is a. `pi/6` b. `pi/4` c. `pi/3` d. `pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the vector equation of the following planes in scalar product form ( vec rdot vec n=d): vec r=( hat i+ hat j)+lambda( hat i+2 hat j- hat k)+mu(- hat i+ hat j-2 hat k)

Show that the plane whose vector equation is vec r*(hat i+2hat j=hat k)=3 contains the line whose vector equation is vec r*(hat i+hat j)+lambda(2hat i+hat j+4hat k)

Find the value of theta(0,pi/2) for which vectors vec a=(sin theta)hat i+(cos theta)hat jandvec b=hat i-sqrt(3)hat j+2hat k are perpendicular.

The lines vec r=(hat i+hat j+hat k)alpha+3hat k and vec r=(hat i-2hat j+hat k)beta+3hat k

Vector equation of the plane r=hat i-hat j+lambda(hat i+hat j+hat k)+mu(hat i2hat j+3hat k) in the scalar dot product form is

Find the angle between the following pairs of lines: -> r=lambda( hat i+ hat j+2 hat k)\ a n d\ -> r=2 hat j+mu[(sqrt(3)-1) hat i-(sqrt(3)+1) hat j+4 hat k]dot

Find the equation of the line passing through the point hat i+ hat j- hat k and perpendicular to the lines vec r= hat i+lambda(2 hat i+ hat j-3 hat k)a n d vec r=(2 hat i+ hat j- hat k)dot

If vec r=(hat i+2hat j+3hat k)+lambda(hat i-hat j+hat k) and vec r=(hat i+2hat j+3hat k)+mu(hat i+hat j-hat k) are bisector of two lines is

Find the distance between the parallel lines L_(1) " and " L_(2) whose vector equations are vec(r ) =(hat(i) +2hat(j) +3hat(k)) + lambda (hat(i)-hat(j) +hat(k)) " and " (2hat(i) -hat(j) -hat(k)) + mu (hat(i) -hat(j) + hat(k))

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))