Home
Class 12
MATHS
If the line x=alpha divides the area of ...

If the line `x=alpha` divides the area of region `R={(x , y)R^2: x^3lt=x ,0lt=xlt=1}` into equal parts, then: `2alpha^4-4alpha^2+1=0` `alpha^4+4alpha^2-1=0` `0

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line x=alpha divides the area of region R={(x,y)in R^(2):x^(3)<=x,0<=x<=1} into equal parts,then: 2 alpha^(4)-4 alpha^(2)+1=0alpha^(4)+4 alpha^(2)-1=00

If the line x= alpha divides the area of region R={(x,y)in R^(2): x^(3) le y le x ,0 le x le 1 } into two equal parts, then

If the line x= alpha divides the area of region R={(x,y)in R^(2): x^(3) le y le x ,0 le x le 1 } into two equal parts, then

If the line x = alpha divides the area of region R = {(x,y) in R^(2) : x^(3) le y le x, 0 le x le 1} into two equal parts, then

If the line x = alpha divides the area of region R = {(x,y) in R^(2) : x^(0) le y le x, 0 le x le 1} into two equal parts, then

If alpha is a root of the equation 4x^(2)+2x-1=0 then the other root is given by O -2 alpha-1 O 4 alpha^(2)+alpha-1 O 4 alpha^(3)-3 alpha O 4 alpha^(2)-3 alpha

If alpha, beta are the roots of the equation x^(2) + x + 1 = 0 then prove that alpha^(4) + beta^(4) + alpha^(-1) beta^(-1) = 0 .

If alpha is a positive root of the equation x^4 +x^3 -4x^2 +x+1=0 then alpha +1/alpha

If alpha is a positive root of the equation x^4 +x^3 -4x^2 +x+1=0 then alpha +1/alpha