Home
Class 12
MATHS
If f(x),g(x)a n dh(x) are three polynomi...

If `f(x),g(x)a n dh(x)` are three polynomials of degree 2, then prove that `varphi(x)=|f(x)g(x)h(x)f^(prime)(x)g^(prime)(x)h^(prime)(x)f^(x)g^(x)h^(x)|i sacon s t a n tpol y nom i a l`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x),g(x)a n dh(x) are three polynomial of degree 2, then prove that varphi(x)=|f(x)g(x)h(x)f'(x)g'(x h '(x)f' '(x)g' '(x h ' '(x)| is a constant polynomial.

If f(x),g(x)a n dh(x) are three polynomial of degree 2, then prove that phi(x)=|f(x)g(x)h(x)f'(x)g'(x h '(x)f' '(x)g' '(x )h ' '(x)| is:

If f(x),g(x)a n dh(x) are three polynomial of degree 2, then prove that phi(x)=|[f(x)g(x)h(x)];[f'(x)g'(x) h '(x)];[f' '(x)g' '(x )h ' '(x)]| is: constant

If f(x),g(x) and h(x) are three polynomials of degree 2, then prove that phi(x) = |[f(x),g(x),h(x)],[f ^ (prime)(x),g^(prime)(x),h^(prime)(x)],[f^(primeprime)(x),g^(primeprime)(x),h^(primeprime)(x)]| is a constant polynomial.

If f(x),g(x) and h(x) are three polynomials of degree 2, then prove that phi(x) = |[f(x),g(x),h(x)],[f ^ (prime)(x),g^(prime)(x),h^(prime)(x)],[f^(primeprime)(x),g^(primeprime)(x),h^(primeprime)(x)]| is a constant polynomial.

If f(x),g(x)a n dh(x) are three polynomial of degree 2, then prove that "phi(x)=|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f''(x),g''(x),h''(x)):}| is a constant polynomial.

If f(x), g(x) and h(x) are three polynomials of degree 2, then prove that phi(x)=|(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f''(x),g''(x),h''(x))| is a constant polynomial.

If f(x),g(x) andh (x) are three polynomial of degree 2, then prove that f(x)g(x)h(x)f'(x)g'(xh'(x)f''(x)g''(x)h''(x)| is a constant polynomial.

If f(x) , g(x) and h(x) are polynomials of degree 2 , then : phi (x) = |(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f''(x),g''(x),h''(x))| is a polynomial of degree :

"Prove that "phi(x)=|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f''(x),g''(x),h''(x)):}| is a constant polynomial.