Home
Class 12
MATHS
Let z1 ,z2 in c and z1 != z2 Show that t...

Let `z_1 ,z_2 in c` and `z_1 != z_2` Show that the equation of any circle passing through `z_1` and `z_2` is `|2z-z_1-z_2|-|z_1-z_2|+lambda Im((z-z_1)/(z_2-z_1))=0` where `lambda in R`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two complex numbers z_1 and z_2 , prove that |z_1+z_2| =|z_1|-|z_2| and |z_1-z_2|>=|z_1|-|z_2|

For any two complex numbers z_1 and z_2 prove that Re(z_1z_2) = Re(z_1)Re(z_2) - Im(z_1)Im(z_2)

For any two complex numbers z_1 and z_2 prove that: |\z_1+z_2|^2=|\z_1|^2+|\z_2|^2+2Re bar z_1 z_2

For any two complex numbers z_1 and z_2 , prove that Re(z_1z_2)=Re(z_1) Re(z_2)-Im(z_1) Im(z_2) .

If z_1ne-z_2 and |z_1+z_2|=|1/z_1 + 1/z_2| then :

If z_1ne-z_2 and |z_1+z_2|=|1/z_1 + 1/z_2| then :

Show that for any two non zero complex numbers z_1,z_2 (|z_1|+|z_2|)|z_1\|z_1|+z_2\|z_2||le2|z_1+z_2|

Show that for any two non zero complex numbers z_1,z_2 (|z_1|+|z_2|)|z_1\|z_1|+z_2\|z_2||le2|z_1+z_2|

If z_1= 2 -i, z_2= 1+ i , find |(z_1+z_2+1)/(z_1-z_2+1)| .

If z_1 and z_2 are two complex numbers such that |\z_1|=|\z_2|+|z_1-z_2| show that Im (z_1/z_2)=0