Home
Class 12
MATHS
If A,B and C are angles of a triangle th...

If `A,B` and `C` are angles of a triangle then the determinant
`|(-1,cosC,cosB),(cosC,-1,cosA),(cosB,cosA,-1)|` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B,C are the angles of a triangles then Delta=|(-1,cosC, cosB),(cosC,-1,cosA),(cosB,cosA,-1)|=

If A,B,C be the angles of a triangle, then prove that , abs((-1,cosC,cosB),(cosC,-1,cosA),(cosB,cosA,-1)) =0

If A,B,C be anlges of a triangle, then prove that, |{:(-1,cosC,cosB),(cosC,-1,cosA),(cosB,cos A,-1):}|=0

If A+B+C=pi,then show that Abs((-1,cosC,cosB),(cosC,-1,cosA),(cosB,cosA,-1))=0

If A+B+C = 0 then prove that |{:(1,cosC,cosB),(cosC,1,cosA),(cosB,cosA,1):}|=0

If A,B,C are the angles of a triangle then prove that cosA+cosB-cosC=-1+4cos(A/2)cos(B/2)sin(C/2)

If A,B,C are the angles of a triangle then prove that cosA+cosB-cosC=-1+4cos(A/2)cos(B/2)sin(C/2)

If A+B+C=0, then prove that Det[[1,cosC,cosB],[cosC,1,cosA],[cosB,cosA,1]]=0