Home
Class 10
MATHS
Prove the following identities: 2(sin^6t...

Prove the following identities: `2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta)+1=0` `sin^6theta+cos^6theta+3sin^2thetacos^2theta=1` `(sin^8theta-cos^8theta)=(sin^2theta-cos^2theta)(1-2s in^2thetacos^2theta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1(sin^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta cos^(2)theta)

Prove the following identity : 2 (sin^6 theta+ cos^6 theta)-3 (sin^4 theta+ cos^4 theta)+1=0 .

Prove that 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta)+1=0

Prove the following identity : sin^6 theta+ cos^6 theta= 1-3 sin^2 theta cos^2 theta .

Prove: sin^(8)theta-cos^(8)theta=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)thetacos^(2)theta)

Prove the following: sin^8theta-cos^8theta=(sin^2theta-cos^2theta)(1-2sin^2thetacos^2theta)

Prove the following: 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta)+1=0

2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta) is equal to

sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1

Prove that sin^6theta+cos^6theta=1-3sin^2thetacos^2theta