Home
Class 11
MATHS
(1) If f(x) = sqrt(x), prove that : (...

`(1)` If `f(x) = sqrt(x)`, prove that :
`(f(x + h) - f(x))/(h)` = `(1)/(sqrt(x + h) + sqrtx)`.
`(2)` If `f(x) = x^(2)`, find :
`(f(1.1) - f(1))/(1.1 - 1)`.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given questions step by step. ### Question 1: Prove that: \[ \frac{f(x + h) - f(x)}{h} = \frac{1}{\sqrt{x + h} + \sqrt{x}} \] where \( f(x) = \sqrt{x} \). **Step 1:** Write down the left-hand side (LHS): \[ \text{LHS} = \frac{f(x + h) - f(x)}{h} = \frac{\sqrt{x + h} - \sqrt{x}}{h} \] **Step 2:** Rationalize the numerator: To rationalize, we multiply the numerator and denominator by the conjugate of the numerator: \[ \text{LHS} = \frac{\sqrt{x + h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x + h} + \sqrt{x}}{\sqrt{x + h} + \sqrt{x}} \] This gives: \[ = \frac{(\sqrt{x + h})^2 - (\sqrt{x})^2}{h(\sqrt{x + h} + \sqrt{x})} \] **Step 3:** Simplify the numerator: Using the identity \( a^2 - b^2 = (a - b)(a + b) \): \[ = \frac{x + h - x}{h(\sqrt{x + h} + \sqrt{x})} \] **Step 4:** Cancel out \( h \): \[ = \frac{h}{h(\sqrt{x + h} + \sqrt{x})} \] **Step 5:** Simplify further: \[ = \frac{1}{\sqrt{x + h} + \sqrt{x}} \] **Conclusion:** Thus, we have proved that: \[ \frac{f(x + h) - f(x)}{h} = \frac{1}{\sqrt{x + h} + \sqrt{x}} \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Exercise 2 (d)|3 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Exercise 2 (e)|4 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Exercise 2(b)|14 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If f(1+x)=x^(2)+1 , then f(2-h) is

If f(x)=(x^(2)-1)/(x^(2)+1) prove that f((1)/(x))=-f(x)

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)

If f(x)=x(sqrt(x)-sqrt(x+1)) then f(x) is:

MODERN PUBLICATION-RELATIONS AND FUNCTIONS-Exercise 2(c )
  1. (i) If f(x) = 3x^(4)- 5x^(2) + 7, " find " f(x-1) (ii) If f(x) = x^(...

    Text Solution

    |

  2. (i) If f(x) = x + (1)/(x) prove that: [f(x)]^(3) = f(x^(3)) + 3f ((1...

    Text Solution

    |

  3. (i) If y = f(x) = (3x-1)/(5x-3), prove that f(y) = x (ii) If y = f(x...

    Text Solution

    |

  4. If f(x) = log(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to...

    Text Solution

    |

  5. (a) What are the real numbers x such that [x] =2? (b) What are the v...

    Text Solution

    |

  6. What values does the function x rarr 2x^(2)-1 associate with the numbe...

    Text Solution

    |

  7. Given f(x) = {(3x-8" for " ,x le5),(7 " for " ,x gt 5):} What is the...

    Text Solution

    |

  8. What is the domain of the function (x)/(x^(2) - 3x + 2) ?

    Text Solution

    |

  9. What is the range of the constant function 1 ?

    Text Solution

    |

  10. For what values of x are the following functions not defined ? (i) (3x...

    Text Solution

    |

  11. Find the periods of the following functions, if periodic : (i) | cos x...

    Text Solution

    |

  12. Show that f: N->N defined by f(n)={(n+1)/2,\ \ if\ n\ i s\ od d n/2,\ ...

    Text Solution

    |

  13. If f(x)=cos(logx), then f(x)f(y)-1/2[f(x/y)+f(xy)]=

    Text Solution

    |

  14. (1) If f(x) = sqrt(x), prove that : (f(x + h) - f(x))/(h) = (1)/(sq...

    Text Solution

    |

  15. Find domain(i) f(x) = (1)/(x - 5) (ii) f(x) = (3 - x)/(x - 3) (iii) f(...

    Text Solution

    |

  16. (i) f(x) = sqrt(3 - 2x) (ii) f(x) = (1)/(sqrt(x + 2)) (iii) f(x) =...

    Text Solution

    |

  17. Find the domain of f(x) = sqrt(log((5x - x^(2))/(6))

    Text Solution

    |

  18. State, given justification for your answer, which of the following pai...

    Text Solution

    |

  19. Are the following functions invertible in their respective domains ? I...

    Text Solution

    |

  20. Let f: R->R be defined by f(x)=3x-7 . Show that f is invertible and he...

    Text Solution

    |