To find the vertices of the triangle given the midpoints of its sides and to find the centroid of the triangle, we can follow these steps:
### Step 1: Set up the midpoints
Let the vertices of the triangle be \( A(x_1, y_1, z_1) \), \( B(x_2, y_2, z_2) \), and \( C(x_3, y_3, z_3) \). The midpoints of the sides of the triangle are given as:
- Midpoint of \( AB \): \( M_1(1, 5, -1) \)
- Midpoint of \( BC \): \( M_2(0, 4, -2) \)
- Midpoint of \( CA \): \( M_3(2, 3, 4) \)
Using the midpoint formula, we can establish the following equations:
1. For midpoint \( M_1 \):
\[
\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2} \right) = (1, 5, -1)
\]
This gives us:
\[
x_1 + x_2 = 2 \quad (1)
\]
\[
y_1 + y_2 = 10 \quad (2)
\]
\[
z_1 + z_2 = -2 \quad (3)
\]
2. For midpoint \( M_2 \):
\[
\left( \frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}, \frac{z_2 + z_3}{2} \right) = (0, 4, -2)
\]
This gives us:
\[
x_2 + x_3 = 0 \quad (4)
\]
\[
y_2 + y_3 = 8 \quad (5)
\]
\[
z_2 + z_3 = -4 \quad (6)
\]
3. For midpoint \( M_3 \):
\[
\left( \frac{x_3 + x_1}{2}, \frac{y_3 + y_1}{2}, \frac{z_3 + z_1}{2} \right) = (2, 3, 4)
\]
This gives us:
\[
x_3 + x_1 = 4 \quad (7)
\]
\[
y_3 + y_1 = 6 \quad (8)
\]
\[
z_3 + z_1 = 8 \quad (9)
\]
### Step 2: Solve the equations
Now we have a system of equations to solve for \( x_1, x_2, x_3 \), \( y_1, y_2, y_3 \), and \( z_1, z_2, z_3 \).
#### Solving for \( x \):
From equations (1), (4), and (7):
1. From (4): \( x_3 = -x_2 \)
2. Substitute \( x_3 \) into (7):
\[
-x_2 + x_1 = 4 \implies x_1 = x_2 + 4 \quad (10)
\]
3. Substitute \( x_1 \) from (10) into (1):
\[
(x_2 + 4) + x_2 = 2 \implies 2x_2 + 4 = 2 \implies 2x_2 = -2 \implies x_2 = -1
\]
4. Now substitute \( x_2 \) back to find \( x_1 \) and \( x_3 \):
\[
x_1 = -1 + 4 = 3
\]
\[
x_3 = -(-1) = 1
\]
#### Solving for \( y \):
From equations (2), (5), and (8):
1. From (5): \( y_3 = 8 - y_2 \)
2. Substitute \( y_3 \) into (8):
\[
(8 - y_2) + y_1 = 6 \implies y_1 - y_2 = -2 \implies y_1 = y_2 - 2 \quad (11)
\]
3. Substitute \( y_1 \) from (11) into (2):
\[
(y_2 - 2) + y_2 = 10 \implies 2y_2 - 2 = 10 \implies 2y_2 = 12 \implies y_2 = 6
\]
4. Now substitute \( y_2 \) back to find \( y_1 \) and \( y_3 \):
\[
y_1 = 6 - 2 = 4
\]
\[
y_3 = 8 - 6 = 2
\]
#### Solving for \( z \):
From equations (3), (6), and (9):
1. From (6): \( z_3 = -4 - z_2 \)
2. Substitute \( z_3 \) into (9):
\[
(-4 - z_2) + z_1 = 8 \implies z_1 - z_2 = 12 \implies z_1 = z_2 + 12 \quad (12)
\]
3. Substitute \( z_1 \) from (12) into (3):
\[
z_2 + 12 + z_2 = -2 \implies 2z_2 + 12 = -2 \implies 2z_2 = -14 \implies z_2 = -7
\]
4. Now substitute \( z_2 \) back to find \( z_1 \) and \( z_3 \):
\[
z_1 = -7 + 12 = 5
\]
\[
z_3 = -4 - (-7) = 3
\]
### Step 3: Compile the vertices
Now we have the coordinates of the vertices:
- \( A(3, 4, 5) \)
- \( B(-1, 6, -7) \)
- \( C(1, 2, 3) \)
### Step 4: Find the centroid
The centroid \( G \) of a triangle with vertices \( A(x_1, y_1, z_1) \), \( B(x_2, y_2, z_2) \), and \( C(x_3, y_3, z_3) \) is given by:
\[
G\left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3} \right)
\]
Substituting the values:
\[
G\left( \frac{3 - 1 + 1}{3}, \frac{4 + 6 + 2}{3}, \frac{5 - 7 + 3}{3} \right) = G\left( \frac{3}{3}, \frac{12}{3}, \frac{1}{3} \right) = G(1, 4, \frac{1}{3})
\]
### Final Answer:
- The vertices of the triangle are \( A(3, 4, 5) \), \( B(-1, 6, -7) \), and \( C(1, 2, 3) \).
- The centroid of the triangle is \( G(1, 4, \frac{1}{3}) \).