Home
Class 12
MATHS
Evaluate : tan^(-1) (2 cos ( 2 sin^(-1...

Evaluate :
`tan^(-1) (2 cos ( 2 sin^(-1) (1/2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \tan^{-1} \left( 2 \cos \left( 2 \sin^{-1} \left( \frac{1}{2} \right) \right) \right) \), we will follow these steps: ### Step 1: Evaluate \( \sin^{-1} \left( \frac{1}{2} \right) \) The value of \( \sin^{-1} \left( \frac{1}{2} \right) \) is \( \frac{\pi}{6} \) because \( \sin \left( \frac{\pi}{6} \right) = \frac{1}{2} \). ### Step 2: Multiply by 2 Now we calculate \( 2 \sin^{-1} \left( \frac{1}{2} \right) \): \[ 2 \sin^{-1} \left( \frac{1}{2} \right) = 2 \times \frac{\pi}{6} = \frac{\pi}{3} \] ### Step 3: Evaluate \( \cos \left( \frac{\pi}{3} \right) \) Next, we find \( \cos \left( \frac{\pi}{3} \right) \): \[ \cos \left( \frac{\pi}{3} \right) = \frac{1}{2} \] ### Step 4: Multiply by 2 Now we compute \( 2 \cos \left( \frac{\pi}{3} \right) \): \[ 2 \cos \left( \frac{\pi}{3} \right) = 2 \times \frac{1}{2} = 1 \] ### Step 5: Evaluate \( \tan^{-1}(1) \) Finally, we find \( \tan^{-1}(1) \): \[ \tan^{-1}(1) = \frac{\pi}{4} \] ### Final Answer Thus, the value of the expression \( \tan^{-1} \left( 2 \cos \left( 2 \sin^{-1} \left( \frac{1}{2} \right) \right) \right) \) is: \[ \frac{\pi}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Frequently Asked Questions|25 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|4 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan^(-1) [2 cos ( 2 sin ^(-1) (1/2))]

tan^(-1)[2cos(2sin^(-1)(1)/(2))]

Find the value of: tan^(-1)[2cos(2sin^(-1)((1)/(2)))]

Evaluate: tan ^ (- 1) 1 + cos ^ (- 1) ((1) / (2)) + sin ^ (- 1) (- (1) / (2)) + tan ^ (- 1) ( -sqrt (3)) - sec ^ (- 1) (- 2) + cos ec ^ (- 1) ((2) / (sqrt (3)))

Find the values of each of the following : tan^(-1) [ 2 cos (2 sin ^(-1). 1/2 ) ]

Find the principal values of the following : tan^(-1) (1) +cos^(-1) (-1/2) +sin^(-1) (-1/2)

The value of tan^(-1) [2 sin (cos^(-1) ""(1)/(2))] is

For the principal values,evaluate each of the following: tan^(-1){2cos(2sin^(-1)((1)/(2)))}cot[sin^(-1){cos(tan^(-1)1)}]

6. Find the value of tan^(-1) (1) + cos^(-1)(-1/2)+ sin^(-1)(-1/2)