Home
Class 12
MATHS
Find the value of : sin^() (2 tan^(-1)...

Find the value of :
` sin^() (2 tan^(-1). 1/4) +cos (tan^(-1)2sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin(2 \tan^{-1}(\frac{1}{4})) + \cos(\tan^{-1}(2\sqrt{2})) \), we will break it down into manageable steps. ### Step 1: Calculate \( \sin(2 \tan^{-1}(\frac{1}{4})) \) Using the double angle formula for sine: \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \] Let \( \theta = \tan^{-1}(\frac{1}{4}) \). Then: \[ \tan(\theta) = \frac{1}{4} \implies \text{opposite} = 1, \text{adjacent} = 4 \] Using the Pythagorean theorem, we find the hypotenuse: \[ \text{hypotenuse} = \sqrt{1^2 + 4^2} = \sqrt{17} \] Now, we can find \( \sin(\theta) \) and \( \cos(\theta) \): \[ \sin(\theta) = \frac{1}{\sqrt{17}}, \quad \cos(\theta) = \frac{4}{\sqrt{17}} \] Now substituting back into the double angle formula: \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) = 2 \cdot \frac{1}{\sqrt{17}} \cdot \frac{4}{\sqrt{17}} = \frac{8}{17} \] ### Step 2: Calculate \( \cos(\tan^{-1}(2\sqrt{2})) \) Let \( \phi = \tan^{-1}(2\sqrt{2}) \). Then: \[ \tan(\phi) = 2\sqrt{2} \implies \text{opposite} = 2\sqrt{2}, \text{adjacent} = 1 \] Using the Pythagorean theorem, we find the hypotenuse: \[ \text{hypotenuse} = \sqrt{(2\sqrt{2})^2 + 1^2} = \sqrt{8 + 1} = 3 \] Now, we can find \( \cos(\phi) \): \[ \cos(\phi) = \frac{1}{3} \] ### Step 3: Combine the results Now we can combine the results from Step 1 and Step 2: \[ \sin(2 \tan^{-1}(\frac{1}{4})) + \cos(\tan^{-1}(2\sqrt{2})) = \frac{8}{17} + \frac{1}{3} \] To add these fractions, we need a common denominator. The least common multiple of 17 and 3 is 51: \[ \frac{8}{17} = \frac{8 \times 3}{17 \times 3} = \frac{24}{51} \] \[ \frac{1}{3} = \frac{1 \times 17}{3 \times 17} = \frac{17}{51} \] Now, add the two fractions: \[ \frac{24}{51} + \frac{17}{51} = \frac{41}{51} \] ### Final Answer Thus, the value of \( \sin(2 \tan^{-1}(\frac{1}{4})) + \cos(\tan^{-1}(2\sqrt{2})) \) is: \[ \boxed{\frac{41}{51}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|4 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (a) (Short Answer Type Questions)|10 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of expression: sin(2tan^(-1)((1)/(3)))+cos(tan^(-1)2sqrt(2))

The value of sin (2 tan ^(-1) "" (1)/(3)) + cos (tan ^(-1) 2 sqrt2) is (p)/(q), then pq is

Find the value of (2tan^(-1)((1)/(sqrt(3)))+cos(tan^(-1)(2sqrt(2)))

Find the value of sin[tan tan^(-1)(-sqrt(3))+cos^(-1)((sqrt(3))/(-2))]

Find the value of sin^(-1)(sqrt3/2)+cos^(-1)(-1)+tan^(-1)(-1)

Find the value of tan ( 1/2 cos ^(-1) . sqrt5/3)

Find the value of : tan^(-1) ((-1)/(sqrt(3)))+cos^(-1)((-sqrt(3))/2)+sin^(-1)(1/2)

Find the value of tan[cos^(-1) (1/2) + tan^(-1) ( - 1/sqrt3)]

MODERN PUBLICATION-INVERSE - TRIGONOMETRIC FUNCTIONS-Frequently Asked Questions
  1. If sin^(-1) x = tan^(-1)ym what is the value of (1)/(x^(2))-(1)/(y^(2)...

    Text Solution

    |

  2. Prove that cos^(-1)x+cos^(-1) [x/2 +(sqrt(3-3x^(2)))/2 ] = pi/3 ,1...

    Text Solution

    |

  3. Find the value of : sin^() (2 tan^(-1). 1/4) +cos (tan^(-1)2sqrt(2))

    Text Solution

    |

  4. Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

    Text Solution

    |

  5. Show that sin^(-1)3/5-sin^(-1)8/(17)=cos^(-1)(84)/(85) .

    Text Solution

    |

  6. Prove that: sin^(-1)((5)/(13))+cos^(-1)((4)/(5))=(1)/(2)sin^(-1)((3696...

    Text Solution

    |

  7. Show that : 2 sin^(-1) (3/5)-tan^(-1) (17/31) = pi/4

    Text Solution

    |

  8. Prove that tan[pi/4+1/2cos^(-1)""a/b]+tan[pi/4-1/2cos^(-1)""a/b]=2b/a

    Text Solution

    |

  9. (9pi)/(8)-(9)/(4)sin^(-1)""(1)/(3)=(9)/(4)sin^(-1)""(2sqrt(2))/(3) (...

    Text Solution

    |

  10. Prove that tan^(- 1)((6x-8x^3)/(1-12 x^2))-tan^(- 1)((4x)/(1-4x^2))=ta...

    Text Solution

    |

  11. Prove that tan ^(-1) . 1/5 + tan^(-1) . 1/7 + tan ^(-1) . 1/8 = pi/4

    Text Solution

    |

  12. Solve : 2 tan^(-1), (cos x) = tan^(-1), (2 cosec x)

    Text Solution

    |

  13. Solve : tan^(-1) 4x +tan^(-1)6x = pi/4

    Text Solution

    |

  14. If tan^-1 ((x-3)/(x-4))+tan^-1((x+3)/(x+4))=pi/4,

    Text Solution

    |

  15. Solve : (i)" "tan^(-1). x/2 +tan^(-1). x/3 = pi/4 , sqrt(6) gt x gt 0...

    Text Solution

    |

  16. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  17. Prove that t a n^(-1)((cosx)/(1+sinx))=pi/4-x/2,\ x in (-pi/2,pi/2)

    Text Solution

    |

  18. Express sin^(-1)((sin x+ cos x)/(2)), where -(pi)/(4) lt x lt (pi)/(4)...

    Text Solution

    |

  19. Prove that : tan^(-1)x +tan^(-1). (2x)/(1-x^(2)) = tan^(-1) . (3x-x^(...

    Text Solution

    |

  20. Simplify tan^(-1)[(acosx-bsinx)/(bcosx+asinx)], if a/btanx >-1 .

    Text Solution

    |