Home
Class 12
MATHS
Solve : (i)" "tan^(-1). x/2 +tan^(-1). ...

Solve :
`(i)" "tan^(-1). x/2 +tan^(-1). x/3 = pi/4 , sqrt(6) gt x gt 0 `
`(ii)" "sin(sin^(-1) . 1/5+cos^(-1)x)=1`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### Part (i): Solve \( \tan^{-1} \left( \frac{x}{2} \right) + \tan^{-1} \left( \frac{x}{3} \right) = \frac{\pi}{4} \) 1. **Use the identity for the sum of inverse tangents**: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \] Here, let \( a = \frac{x}{2} \) and \( b = \frac{x}{3} \). \[ \tan^{-1} \left( \frac{x}{2} \right) + \tan^{-1} \left( \frac{x}{3} \right) = \tan^{-1} \left( \frac{\frac{x}{2} + \frac{x}{3}}{1 - \frac{x}{2} \cdot \frac{x}{3}} \right) \] 2. **Calculate \( \frac{x}{2} + \frac{x}{3} \)**: \[ \frac{x}{2} + \frac{x}{3} = \frac{3x + 2x}{6} = \frac{5x}{6} \] 3. **Calculate \( 1 - \frac{x}{2} \cdot \frac{x}{3} \)**: \[ 1 - \frac{x}{2} \cdot \frac{x}{3} = 1 - \frac{x^2}{6} = \frac{6 - x^2}{6} \] 4. **Substitute back into the identity**: \[ \tan^{-1} \left( \frac{\frac{5x}{6}}{\frac{6 - x^2}{6}} \right) = \tan^{-1} \left( \frac{5x}{6 - x^2} \right) \] 5. **Set the equation equal to \( \tan \frac{\pi}{4} \)**: \[ \tan^{-1} \left( \frac{5x}{6 - x^2} \right) = \frac{\pi}{4} \implies \frac{5x}{6 - x^2} = 1 \] 6. **Cross-multiply to solve for \( x \)**: \[ 5x = 6 - x^2 \] Rearranging gives: \[ x^2 + 5x - 6 = 0 \] 7. **Factor the quadratic equation**: \[ (x + 6)(x - 1) = 0 \] 8. **Find the values of \( x \)**: \[ x + 6 = 0 \implies x = -6 \quad \text{(not valid since } x > 0\text{)} \] \[ x - 1 = 0 \implies x = 1 \] 9. **Check the range**: Since \( 0 < x < \sqrt{6} \) and \( \sqrt{6} \approx 2.45 \), \( x = 1 \) is valid. ### Solution for Part (i): \[ \boxed{1} \] --- ### Part (ii): Solve \( \sin(\sin^{-1} \frac{1}{5} + \cos^{-1} x) = 1 \) 1. **Recognize that \( \sin^{-1} \frac{1}{5} + \cos^{-1} x = \frac{\pi}{2} \)**: \[ \sin(\sin^{-1} a + \cos^{-1} b) = 1 \implies \sin^{-1} \frac{1}{5} + \cos^{-1} x = \frac{\pi}{2} \] 2. **Rearranging gives**: \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} \frac{1}{5} \] 3. **Use the identity \( \cos^{-1} a = \sin^{-1} \sqrt{1 - a^2} \)**: \[ x = \sin\left(\frac{\pi}{2} - \sin^{-1} \frac{1}{5}\right) = \cos(\sin^{-1} \frac{1}{5}) \] 4. **Calculate \( \cos(\sin^{-1} \frac{1}{5}) \)**: Using the Pythagorean identity: \[ \cos(\theta) = \sqrt{1 - \sin^2(\theta)} \] where \( \sin(\theta) = \frac{1}{5} \): \[ \cos(\sin^{-1} \frac{1}{5}) = \sqrt{1 - \left(\frac{1}{5}\right)^2} = \sqrt{1 - \frac{1}{25}} = \sqrt{\frac{24}{25}} = \frac{\sqrt{24}}{5} = \frac{2\sqrt{6}}{5} \] ### Solution for Part (ii): \[ \boxed{\frac{2\sqrt{6}}{5}} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|4 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (a) (Short Answer Type Questions)|10 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Solve : tan(cos^(-1) x) = sin (tan^(-1) 2)

Solver sin^(-1) x gt tan^(-1) x

Find the solution of tan^(-1) 2x +tan^(-1) 3x = pi/4 , x gt 0

If sin^(-1) x gt cos^(-1) x then

Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = pi/4 , x gt 0

Solve for x : i) cos(sin^(-1)x)=1/2 ii) tan^(-1)x=sin^(-1)1/sqrt(2) iii) sin^(-1)x-cos^(-1)x=pi/6

tan ^ (2) (sin ^ (- 1) x)> 1

If cos^(-1)x gt sin^(-1) x , then

Prove that tan^(-1).(1)/(sqrt(x^(2) -1)) = (pi)/(2) - sec^(-1) x, x gt 1

MODERN PUBLICATION-INVERSE - TRIGONOMETRIC FUNCTIONS-Frequently Asked Questions
  1. Find the value of : sin^() (2 tan^(-1). 1/4) +cos (tan^(-1)2sqrt(2))

    Text Solution

    |

  2. Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

    Text Solution

    |

  3. Show that sin^(-1)3/5-sin^(-1)8/(17)=cos^(-1)(84)/(85) .

    Text Solution

    |

  4. Prove that: sin^(-1)((5)/(13))+cos^(-1)((4)/(5))=(1)/(2)sin^(-1)((3696...

    Text Solution

    |

  5. Show that : 2 sin^(-1) (3/5)-tan^(-1) (17/31) = pi/4

    Text Solution

    |

  6. Prove that tan[pi/4+1/2cos^(-1)""a/b]+tan[pi/4-1/2cos^(-1)""a/b]=2b/a

    Text Solution

    |

  7. (9pi)/(8)-(9)/(4)sin^(-1)""(1)/(3)=(9)/(4)sin^(-1)""(2sqrt(2))/(3) (...

    Text Solution

    |

  8. Prove that tan^(- 1)((6x-8x^3)/(1-12 x^2))-tan^(- 1)((4x)/(1-4x^2))=ta...

    Text Solution

    |

  9. Prove that tan ^(-1) . 1/5 + tan^(-1) . 1/7 + tan ^(-1) . 1/8 = pi/4

    Text Solution

    |

  10. Solve : 2 tan^(-1), (cos x) = tan^(-1), (2 cosec x)

    Text Solution

    |

  11. Solve : tan^(-1) 4x +tan^(-1)6x = pi/4

    Text Solution

    |

  12. If tan^-1 ((x-3)/(x-4))+tan^-1((x+3)/(x+4))=pi/4,

    Text Solution

    |

  13. Solve : (i)" "tan^(-1). x/2 +tan^(-1). x/3 = pi/4 , sqrt(6) gt x gt 0...

    Text Solution

    |

  14. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  15. Prove that t a n^(-1)((cosx)/(1+sinx))=pi/4-x/2,\ x in (-pi/2,pi/2)

    Text Solution

    |

  16. Express sin^(-1)((sin x+ cos x)/(2)), where -(pi)/(4) lt x lt (pi)/(4)...

    Text Solution

    |

  17. Prove that : tan^(-1)x +tan^(-1). (2x)/(1-x^(2)) = tan^(-1) . (3x-x^(...

    Text Solution

    |

  18. Simplify tan^(-1)[(acosx-bsinx)/(bcosx+asinx)], if a/btanx >-1 .

    Text Solution

    |

  19. Prove that: tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+)x+sqrt(1-x))]=pi/4...

    Text Solution

    |

  20. Prove the following: "cos"[tan^(-1){sin(cos t^(-1)x)}]= sqrt((1+x^2)/...

    Text Solution

    |