Home
Class 12
MATHS
Find the value of : tan^(-1) ((-1)/(sqrt...

Find the value of : `tan^(-1) ((-1)/(sqrt(3)))+cos^(-1)((-sqrt(3))/2)+sin^(-1)(1/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( \tan^{-1} \left( \frac{-1}{\sqrt{3}} \right) + \cos^{-1} \left( \frac{-\sqrt{3}}{2} \right) + \sin^{-1} \left( \frac{1}{2} \right) \), we will evaluate each term step by step. ### Step 1: Evaluate \( \tan^{-1} \left( \frac{-1}{\sqrt{3}} \right) \) The value of \( \tan^{-1} \left( \frac{-1}{\sqrt{3}} \right) \) corresponds to an angle where the tangent is \( \frac{-1}{\sqrt{3}} \). We know that: \[ \tan \left( -\frac{\pi}{6} \right) = \frac{-1}{\sqrt{3}} \] Thus, \[ \tan^{-1} \left( \frac{-1}{\sqrt{3}} \right) = -\frac{\pi}{6} \] ### Step 2: Evaluate \( \cos^{-1} \left( \frac{-\sqrt{3}}{2} \right) \) The value of \( \cos^{-1} \left( \frac{-\sqrt{3}}{2} \right) \) corresponds to an angle where the cosine is \( \frac{-\sqrt{3}}{2} \). We know that: \[ \cos \left( \frac{5\pi}{6} \right) = \frac{-\sqrt{3}}{2} \] Thus, \[ \cos^{-1} \left( \frac{-\sqrt{3}}{2} \right) = \frac{5\pi}{6} \] ### Step 3: Evaluate \( \sin^{-1} \left( \frac{1}{2} \right) \) The value of \( \sin^{-1} \left( \frac{1}{2} \right) \) corresponds to an angle where the sine is \( \frac{1}{2} \). We know that: \[ \sin \left( \frac{\pi}{6} \right) = \frac{1}{2} \] Thus, \[ \sin^{-1} \left( \frac{1}{2} \right) = \frac{\pi}{6} \] ### Step 4: Combine the results Now, we can combine all the evaluated results: \[ \tan^{-1} \left( \frac{-1}{\sqrt{3}} \right) + \cos^{-1} \left( \frac{-\sqrt{3}}{2} \right) + \sin^{-1} \left( \frac{1}{2} \right) = -\frac{\pi}{6} + \frac{5\pi}{6} + \frac{\pi}{6} \] ### Step 5: Simplify the expression Combining these: \[ -\frac{\pi}{6} + \frac{5\pi}{6} + \frac{\pi}{6} = \frac{-\pi + 5\pi + \pi}{6} = \frac{5\pi}{6} \] ### Final Answer Thus, the value of the expression is: \[ \frac{5\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (b) (Short Answer Type Questions)|85 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (b) (Long Answer Type Questions (II))|2 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (a) (Short Answer Type Questions)|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of (2tan^(-1)((1)/(sqrt(3)))+cos(tan^(-1)(2sqrt(2)))

Find the value of sin[tan tan^(-1)(-sqrt(3))+cos^(-1)((sqrt(3))/(-2))]

sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((sqrt(3))/(2))

Find the value of tan^(-1)(-1/(sqrt(3)))+cot^(-1)((1)/(sqrt(3))) + tan^(-1)[sin'((-pi)/(2))] .

Find the value of tan((1)/(2)cos^(-1)((sqrt(5))/(3)))

sin^(-1)((sqrt(3))/(2))-tan^(-1)(-sqrt(3))

Find the values of : (1) cos^(-1)((1)/(2))+tan^(-1)((1)/sqrt(3)) (2) cos^(-1)((1)/(2))+2sin^(-1) ((1)/(2)) (3) cosec ^(-1)(-sqrt(2))+cot^(-1)(sqrt(3)) .

Find the principal value of: i) sin^(-1)(-1/sqrt(2)) , ii) cos^(-1)(-sqrt(3)/2) iii) tan^(-1)(-sqrt(3)) iv) sec^(-1)(-2) v) "cosec"^(-1)(-sqrt(2)) , vii) cot^(-1)(-1/sqrt(3)) .

Find the value of sec^(-1)(-2)+tan^(-1)(-1/sqrt3)

Find the value of sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((1)/(2))+tan^(-1)(-(1)/(sqrt(3)))