Home
Class 12
MATHS
Find the value of : 4(2 tan^(-1) . 1...

Find the value of :
`4(2 tan^(-1) . 1/3 +tan^(-1). 1/7)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( 4 \left( 2 \tan^{-1} \left( \frac{1}{3} \right) + \tan^{-1} \left( \frac{1}{7} \right) \right) \), we will follow these steps: ### Step 1: Simplify the expression inside the brackets We start with the expression: \[ 2 \tan^{-1} \left( \frac{1}{3} \right) + \tan^{-1} \left( \frac{1}{7} \right) \] ### Step 2: Use the double angle formula for tangent Recall that: \[ 2 \tan^{-1}(x) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \] Let \( x = \frac{1}{3} \). Then: \[ 2 \tan^{-1} \left( \frac{1}{3} \right) = \tan^{-1} \left( \frac{2 \cdot \frac{1}{3}}{1 - \left( \frac{1}{3} \right)^2} \right) \] Calculating the denominator: \[ 1 - \left( \frac{1}{3} \right)^2 = 1 - \frac{1}{9} = \frac{8}{9} \] Now substituting back: \[ 2 \tan^{-1} \left( \frac{1}{3} \right) = \tan^{-1} \left( \frac{\frac{2}{3}}{\frac{8}{9}} \right) = \tan^{-1} \left( \frac{2 \cdot 9}{3 \cdot 8} \right) = \tan^{-1} \left( \frac{6}{8} \right) = \tan^{-1} \left( \frac{3}{4} \right) \] ### Step 3: Combine the two arctangent terms Now we have: \[ \tan^{-1} \left( \frac{3}{4} \right) + \tan^{-1} \left( \frac{1}{7} \right) \] Using the formula for the sum of arctangents: \[ \tan^{-1}(A) + \tan^{-1}(B) = \tan^{-1} \left( \frac{A + B}{1 - AB} \right) \] Let \( A = \frac{3}{4} \) and \( B = \frac{1}{7} \): \[ AB = \frac{3}{4} \cdot \frac{1}{7} = \frac{3}{28} \] Now substituting into the formula: \[ \tan^{-1} \left( \frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{28}} \right) \] ### Step 4: Calculate the numerator and denominator Numerator: \[ \frac{3}{4} + \frac{1}{7} = \frac{21 + 4}{28} = \frac{25}{28} \] Denominator: \[ 1 - \frac{3}{28} = \frac{28 - 3}{28} = \frac{25}{28} \] Thus, we have: \[ \tan^{-1} \left( \frac{\frac{25}{28}}{\frac{25}{28}} \right) = \tan^{-1}(1) = \frac{\pi}{4} \] ### Step 5: Multiply by 4 Now we return to our original expression: \[ 4 \left( 2 \tan^{-1} \left( \frac{1}{3} \right) + \tan^{-1} \left( \frac{1}{7} \right) \right) = 4 \cdot \frac{\pi}{4} = \pi \] ### Final Answer Thus, the value is: \[ \pi \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (b) (Long Answer Type Questions (II))|2 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions)|26 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (a) (Long Answer Type Questions )|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of 4 tan^(-1).(1)/(5) - tan^(-1).(1)/(70) + tan^(-1).(1)/(99)

Find the value of : sin^() (2 tan^(-1). 1/4) +cos (tan^(-1)2sqrt(2))

Find the value of x: tan^-1 x + tan^-1 (1/3) = π/4

Find the value of tan[cos^(-1) (1/2) + tan^(-1) ( - 1/sqrt3)]

Find the value of sin^(-1) ((3)/(5)) + tan^(-1) ((1)/(7))

MODERN PUBLICATION-INVERSE - TRIGONOMETRIC FUNCTIONS-EXERCISE 2 (b) (Short Answer Type Questions)
  1. Prove that : tan^(-1)(63)/(16)=sin^(-1)5/(13)+cos^(-1)3/5

    Text Solution

    |

  2. Prove that: sin^(-1)((3)/(5))+cos^(-1)((5)/(sqrt(26)))=tan^(-1)((19)/(...

    Text Solution

    |

  3. Find the value of : 4(2 tan^(-1) . 1/3 +tan^(-1). 1/7)

    Text Solution

    |

  4. Prove that :2tan^(-1)1/5+sec^(-1)(5sqrt(2))/7+2tan^(-1)\ 1/8=pi/4

    Text Solution

    |

  5. Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

    Text Solution

    |

  6. Prove that: cot^(-1)((ab+1)/(a-b))+cot^(-1)((bc+1)/(b-c))+cot^(-1)((ca...

    Text Solution

    |

  7. Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1...

    Text Solution

    |

  8. Prove that tan[pi/4+1/2cos^(-1)""a/b]+tan[pi/4-1/2cos^(-1)""a/b]=2b/a

    Text Solution

    |

  9. Solve tan^(-1)2x+tan^(-1)3x=pi/4.

    Text Solution

    |

  10. Solve tan^(-1) ((x+1)/(x-1)) + tan^(-1) ((x-1)/x) = tan^(-1)(-7)

    Text Solution

    |

  11. Solve : tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=pi/4

    Text Solution

    |

  12. Solve sin^(-1) (1 - x) - 2 sin^(-1) x = (pi)/(2)

    Text Solution

    |

  13. Solve for x : 2tan^(-1)(sinx)=tan^(-1)(2secx),\ x!=pi/2

    Text Solution

    |

  14. Solve : 2 tan^(-1), (cos x) = tan^(-1), (2 cosec x)

    Text Solution

    |

  15. Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = ta...

    Text Solution

    |

  16. Solve the following equations : tan^(-1) (x+1) +tan^(-1) (x-1) = ...

    Text Solution

    |

  17. Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = ...

    Text Solution

    |

  18. If tan ^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x, x gt 0, then x = ?

    Text Solution

    |

  19. Solve the following equations : tan^(-1). (2x)/(1-x^(2)) +cos^(-1)....

    Text Solution

    |

  20. Solve the following equations : cos (tan^(-1) x ) = sin (cot^(-1)...

    Text Solution

    |