Home
Class 12
MATHS
Solve the following equations : tan^(...

Solve the following equations :
`tan^(-1) (x+1) +tan^(-1) (x-1) = tan^(-1) (8/31 ) , x gt 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1}\left(\frac{8}{31}\right) \) where \( x > 0 \), we can use the identity for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a+b}{1-ab}\right) \] ### Step-by-step Solution: 1. **Apply the Identity**: We apply the identity to the left-hand side of the equation: \[ \tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1}\left(\frac{(x+1) + (x-1)}{1 - (x+1)(x-1)}\right) \] 2. **Simplify the Numerator**: The numerator simplifies as follows: \[ (x+1) + (x-1) = 2x \] 3. **Simplify the Denominator**: The denominator simplifies as follows: \[ 1 - (x+1)(x-1) = 1 - (x^2 - 1) = 1 - x^2 + 1 = 2 - x^2 \] 4. **Rewrite the Equation**: Now we can rewrite the equation: \[ \tan^{-1}\left(\frac{2x}{2 - x^2}\right) = \tan^{-1}\left(\frac{8}{31}\right) \] 5. **Remove the Inverse Tangent**: Since the tangent function is one-to-one, we can equate the arguments: \[ \frac{2x}{2 - x^2} = \frac{8}{31} \] 6. **Cross Multiply**: Cross-multiplying gives: \[ 2x \cdot 31 = 8(2 - x^2) \] Simplifying this: \[ 62x = 16 - 8x^2 \] 7. **Rearrange the Equation**: Rearranging gives: \[ 8x^2 + 62x - 16 = 0 \] 8. **Divide by 2**: We can simplify the equation by dividing everything by 2: \[ 4x^2 + 31x - 8 = 0 \] 9. **Factor the Quadratic**: We need to factor the quadratic equation. We look for two numbers that multiply to \( 4 \times -8 = -32 \) and add to \( 31 \). The numbers are \( 32 \) and \( -1 \): \[ 4x^2 + 32x - x - 8 = 0 \] Grouping gives: \[ 4x(x + 8) - 1(x + 8) = 0 \] Factoring out \( (x + 8) \): \[ (x + 8)(4x - 1) = 0 \] 10. **Find the Roots**: Setting each factor to zero gives: \[ x + 8 = 0 \quad \Rightarrow \quad x = -8 \quad (\text{not valid since } x > 0) \] \[ 4x - 1 = 0 \quad \Rightarrow \quad x = \frac{1}{4} \] ### Final Answer: Thus, the solution to the equation is: \[ \boxed{\frac{1}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (b) (Long Answer Type Questions (II))|2 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions)|26 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (a) (Long Answer Type Questions )|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = tan^(-1) (8/79)

Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = pi/4 , x gt 0

If tan^(-1)(x+1)+ tan^(-1)(x-1)= tan^(-1)(8/31) ,then x is equal to

Solve the following equations : 2tan^(-1) (sin x) = tan^(-1) (2sec x ,) 0 lt x lt pi/2

Solve for x:tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((8)/(31))

Solve the following equations : tan^(-1) ((x-2)/(x-4)) +tan^(-1) ((x+2)/(x+4)) = pi/ 4

Solve tan^(-1) x + sin^(-1) x = tan^(-1) 2x

Solve the following system of inequations: 4(tan^(-1)x)^(2)-8tan^(-1)x+3 =0

Solve the following inequalities tan^(2) (arc sin x)gt 1

Solve the following equations : tan^(-1). (2x)/(1-x^(2)) +cos^(-1). (1-x^(2))/(2x) = pi/3 , x gt 0

MODERN PUBLICATION-INVERSE - TRIGONOMETRIC FUNCTIONS-EXERCISE 2 (b) (Short Answer Type Questions)
  1. Solve : 2 tan^(-1), (cos x) = tan^(-1), (2 cosec x)

    Text Solution

    |

  2. Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = ta...

    Text Solution

    |

  3. Solve the following equations : tan^(-1) (x+1) +tan^(-1) (x-1) = ...

    Text Solution

    |

  4. Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = ...

    Text Solution

    |

  5. If tan ^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x, x gt 0, then x = ?

    Text Solution

    |

  6. Solve the following equations : tan^(-1). (2x)/(1-x^(2)) +cos^(-1)....

    Text Solution

    |

  7. Solve the following equations : cos (tan^(-1) x ) = sin (cot^(-1)...

    Text Solution

    |

  8. If sin(cot^(-1)(x+1))=costan^(-1)x, then x=

    Text Solution

    |

  9. Solve the following equations : 2tan^(-1) (sin x) = tan^(-1) (2se...

    Text Solution

    |

  10. Solve the following equations : cos (sin^(-1) x) = 1/2

    Text Solution

    |

  11. Solve the following equations : tan^(-1) ((x-2)/(x-4)) +tan^(-1) (...

    Text Solution

    |

  12. Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = t...

    Text Solution

    |

  13. Solve for x : 3 sin^(-1) ((2x)/(1+x^(2))) - 4 cos^(-1) ((1-x^(2))...

    Text Solution

    |

  14. Express each of the following in the simplest form: tan^(-1){(cosx)...

    Text Solution

    |

  15. Write the following function in the simplest form: tan^(-1)((cosx-sinx...

    Text Solution

    |

  16. Write the following function in the simplest form: tan^(-1)((cosx-sinx...

    Text Solution

    |

  17. Write the following functions in the simplest form: tan^(-1){x/(a^2-x...

    Text Solution

    |

  18. Write the following function in the simplest form: tan^(-1)(sqrt(1+x^2...

    Text Solution

    |

  19. Write the following in the simplest form : tan ^(-1) ((sqrt(1-x^(...

    Text Solution

    |

  20. Prove that : tan^(-1) ((sqrt(1-x^(2)))/(1+x)) = 1/2 cos^(-1) x

    Text Solution

    |