Home
Class 12
MATHS
Solve the following equations : tan...

Solve the following equations :
` tan^(-1) (x+2) +tan^(-1) (x-2) = pi/4 , x gt 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(x+2) + \tan^{-1}(x-2) = \frac{\pi}{4} \) for \( x > 0 \), we can follow these steps: ### Step 1: Use the formula for the sum of inverse tangents We know that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] provided \( ab < 1 \). In our case, let \( a = x + 2 \) and \( b = x - 2 \). Thus, we can rewrite the equation as: \[ \tan^{-1}\left(\frac{(x + 2) + (x - 2)}{1 - (x + 2)(x - 2)}\right) = \frac{\pi}{4} \] ### Step 2: Simplify the expression Now, simplify the numerator and denominator: - Numerator: \[ (x + 2) + (x - 2) = 2x \] - Denominator: \[ 1 - (x + 2)(x - 2) = 1 - (x^2 - 4) = 5 - x^2 \] So, we have: \[ \tan^{-1}\left(\frac{2x}{5 - x^2}\right) = \frac{\pi}{4} \] ### Step 3: Take the tangent of both sides Taking the tangent of both sides gives: \[ \frac{2x}{5 - x^2} = 1 \] ### Step 4: Solve for \( x \) Cross-multiplying leads to: \[ 2x = 5 - x^2 \] Rearranging gives: \[ x^2 + 2x - 5 = 0 \] ### Step 5: Use the quadratic formula We can solve this quadratic equation using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = 2, c = -5 \): \[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-5)}}{2 \cdot 1} = \frac{-2 \pm \sqrt{4 + 20}}{2} = \frac{-2 \pm \sqrt{24}}{2} = \frac{-2 \pm 2\sqrt{6}}{2} = -1 \pm \sqrt{6} \] ### Step 6: Determine valid solutions This gives us two potential solutions: \[ x = -1 + \sqrt{6} \quad \text{and} \quad x = -1 - \sqrt{6} \] Since \( x > 0 \), we only consider \( x = -1 + \sqrt{6} \). ### Final Answer Thus, the solution to the equation is: \[ x = -1 + \sqrt{6} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (b) (Long Answer Type Questions (II))|2 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions)|26 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (a) (Long Answer Type Questions )|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = tan^(-1) (8/79)

Solve the following equations : tan^(-1) (x+1) +tan^(-1) (x-1) = tan^(-1) (8/31 ) , x gt 0

Solve the following equations : tan^(-1) ((x-2)/(x-4)) +tan^(-1) ((x+2)/(x+4)) = pi/ 4

Solve the following equations : 2tan^(-1) (sin x) = tan^(-1) (2sec x ,) 0 lt x lt pi/2

tan^(-1)(x+2)+tan^(-1)(x-2)=(pi)/(4);x>0

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

Find the solution of tan^(-1) 2x +tan^(-1) 3x = pi/4 , x gt 0

Solve the following system of inequations: 4(tan^(-1)x)^(2)-8tan^(-1)x+3 =0

MODERN PUBLICATION-INVERSE - TRIGONOMETRIC FUNCTIONS-EXERCISE 2 (b) (Short Answer Type Questions)
  1. Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = ta...

    Text Solution

    |

  2. Solve the following equations : tan^(-1) (x+1) +tan^(-1) (x-1) = ...

    Text Solution

    |

  3. Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = ...

    Text Solution

    |

  4. If tan ^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x, x gt 0, then x = ?

    Text Solution

    |

  5. Solve the following equations : tan^(-1). (2x)/(1-x^(2)) +cos^(-1)....

    Text Solution

    |

  6. Solve the following equations : cos (tan^(-1) x ) = sin (cot^(-1)...

    Text Solution

    |

  7. If sin(cot^(-1)(x+1))=costan^(-1)x, then x=

    Text Solution

    |

  8. Solve the following equations : 2tan^(-1) (sin x) = tan^(-1) (2se...

    Text Solution

    |

  9. Solve the following equations : cos (sin^(-1) x) = 1/2

    Text Solution

    |

  10. Solve the following equations : tan^(-1) ((x-2)/(x-4)) +tan^(-1) (...

    Text Solution

    |

  11. Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = t...

    Text Solution

    |

  12. Solve for x : 3 sin^(-1) ((2x)/(1+x^(2))) - 4 cos^(-1) ((1-x^(2))...

    Text Solution

    |

  13. Express each of the following in the simplest form: tan^(-1){(cosx)...

    Text Solution

    |

  14. Write the following function in the simplest form: tan^(-1)((cosx-sinx...

    Text Solution

    |

  15. Write the following function in the simplest form: tan^(-1)((cosx-sinx...

    Text Solution

    |

  16. Write the following functions in the simplest form: tan^(-1){x/(a^2-x...

    Text Solution

    |

  17. Write the following function in the simplest form: tan^(-1)(sqrt(1+x^2...

    Text Solution

    |

  18. Write the following in the simplest form : tan ^(-1) ((sqrt(1-x^(...

    Text Solution

    |

  19. Prove that : tan^(-1) ((sqrt(1-x^(2)))/(1+x)) = 1/2 cos^(-1) x

    Text Solution

    |

  20. prove that 1/2tan^-1x=cos^-1xsqrt((1+sqrt(1+x^2))/(2sqrt(1+x^2))

    Text Solution

    |