Home
Class 12
MATHS
Solve the following equations : cos ...

Solve the following equations :
`cos (tan^(-1) x ) = sin (cot^(-1). 3/4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos(\tan^{-1} x) = \sin(\cot^{-1} \frac{3}{4}) \), we will follow these steps: ### Step 1: Simplify the right side Let \( \theta = \cot^{-1} \frac{3}{4} \). By the definition of cotangent, we have: \[ \cot \theta = \frac{3}{4} \] This means that the adjacent side is 3 and the opposite side is 4 in a right triangle. We can find the hypotenuse using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] ### Step 2: Find \( \sin \theta \) Now we can find \( \sin \theta \): \[ \sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{4}{5} \] ### Step 3: Set up the equation Now we have: \[ \cos(\tan^{-1} x) = \frac{4}{5} \] ### Step 4: Simplify the left side Let \( \phi = \tan^{-1} x \). By the definition of tangent, we have: \[ \tan \phi = x \] This means that in a right triangle, the opposite side is \( x \) and the adjacent side is 1. We can find the hypotenuse: \[ \text{Hypotenuse} = \sqrt{x^2 + 1^2} = \sqrt{x^2 + 1} \] ### Step 5: Find \( \cos \phi \) Now we can find \( \cos \phi \): \[ \cos \phi = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{1}{\sqrt{x^2 + 1}} \] ### Step 6: Set up the equation Now we have: \[ \frac{1}{\sqrt{x^2 + 1}} = \frac{4}{5} \] ### Step 7: Cross-multiply and solve for \( x \) Cross-multiplying gives: \[ 5 = 4\sqrt{x^2 + 1} \] Now, divide both sides by 4: \[ \frac{5}{4} = \sqrt{x^2 + 1} \] Now, square both sides: \[ \left(\frac{5}{4}\right)^2 = x^2 + 1 \] \[ \frac{25}{16} = x^2 + 1 \] Now, subtract 1 from both sides: \[ \frac{25}{16} - 1 = x^2 \] Convert 1 to a fraction: \[ \frac{25}{16} - \frac{16}{16} = x^2 \] \[ \frac{9}{16} = x^2 \] ### Step 8: Solve for \( x \) Taking the square root gives: \[ x = \pm \frac{3}{4} \] ### Final Answer Thus, the solutions for \( x \) are: \[ x = \frac{3}{4} \quad \text{or} \quad x = -\frac{3}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (b) (Long Answer Type Questions (II))|2 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions)|26 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (a) (Long Answer Type Questions )|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations : cos (sin^(-1) x) = 1/2

Solve the following equation for x:cos(tan^(-1)x)=sin((cot^(-1)3)/(4))tan(cos^(-1)x)=sin((cot^(-1)1)/(2))

Solve the equation cos(tan^(-1)x) = sin(cot^(-1)'3/4) .

If: cos(tan^(-1)x)=sin (cot^(-1).(3)/(4)), then : x =

Solve the following equations: sin[2cos^(-1){cot(2tan^(-1)x}]=0

Solve : tan(cos^(-1) x) = sin (tan^(-1) 2)

Solve that following equations: 2tan theta-cot theta=-1

Solve the following equation: sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the following equations: (i) sin^(8)x - cos^(8)x=1 (ii) sin^(10)x - cot^(8)x=1

Solve for x:cos(tan^(-1)x)=sin(cot^(-1)backslash(3)/(4))

MODERN PUBLICATION-INVERSE - TRIGONOMETRIC FUNCTIONS-EXERCISE 2 (b) (Short Answer Type Questions)
  1. If tan ^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x, x gt 0, then x = ?

    Text Solution

    |

  2. Solve the following equations : tan^(-1). (2x)/(1-x^(2)) +cos^(-1)....

    Text Solution

    |

  3. Solve the following equations : cos (tan^(-1) x ) = sin (cot^(-1)...

    Text Solution

    |

  4. If sin(cot^(-1)(x+1))=costan^(-1)x, then x=

    Text Solution

    |

  5. Solve the following equations : 2tan^(-1) (sin x) = tan^(-1) (2se...

    Text Solution

    |

  6. Solve the following equations : cos (sin^(-1) x) = 1/2

    Text Solution

    |

  7. Solve the following equations : tan^(-1) ((x-2)/(x-4)) +tan^(-1) (...

    Text Solution

    |

  8. Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = t...

    Text Solution

    |

  9. Solve for x : 3 sin^(-1) ((2x)/(1+x^(2))) - 4 cos^(-1) ((1-x^(2))...

    Text Solution

    |

  10. Express each of the following in the simplest form: tan^(-1){(cosx)...

    Text Solution

    |

  11. Write the following function in the simplest form: tan^(-1)((cosx-sinx...

    Text Solution

    |

  12. Write the following function in the simplest form: tan^(-1)((cosx-sinx...

    Text Solution

    |

  13. Write the following functions in the simplest form: tan^(-1){x/(a^2-x...

    Text Solution

    |

  14. Write the following function in the simplest form: tan^(-1)(sqrt(1+x^2...

    Text Solution

    |

  15. Write the following in the simplest form : tan ^(-1) ((sqrt(1-x^(...

    Text Solution

    |

  16. Prove that : tan^(-1) ((sqrt(1-x^(2)))/(1+x)) = 1/2 cos^(-1) x

    Text Solution

    |

  17. prove that 1/2tan^-1x=cos^-1xsqrt((1+sqrt(1+x^2))/(2sqrt(1+x^2))

    Text Solution

    |

  18. Prove that : tan^(-1) [ (sqrt(1+z) +sqrt(1-z))/(sqrt(1+z) -sqrt(1-z...

    Text Solution

    |

  19. tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

    Text Solution

    |

  20. Prove that : cot^(-1) ((sqrt(1+x) -sqrt(1-x))/(sqrt(1+x) +sqrt(1-x)...

    Text Solution

    |