Home
Class 12
MATHS
Solve the following equations : 2tan...

Solve the following equations :
`2tan^(-1) (sin x) = tan^(-1) (2sec x ,) 0 lt x lt pi/2 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\tan^{-1}(\sin x) = \tan^{-1}(2 \sec x) \) for \( 0 < x < \frac{\pi}{2} \), we will follow these steps: ### Step 1: Use the double angle formula for tangent We know that: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] Let \( \theta = \tan^{-1}(\sin x) \). Then, we can rewrite the left-hand side: \[ 2\tan^{-1}(\sin x) = \tan(2\tan^{-1}(\sin x)) = \frac{2\sin x}{1 - \sin^2 x} \] Using the identity \( 1 - \sin^2 x = \cos^2 x \), we can simplify this to: \[ \tan(2\tan^{-1}(\sin x)) = \frac{2\sin x}{\cos^2 x} \] ### Step 2: Rewrite the right-hand side The right-hand side can be rewritten using the definition of secant: \[ \tan^{-1}(2 \sec x) = \tan^{-1}\left(\frac{2}{\cos x}\right) \] ### Step 3: Set the two sides equal Now we have: \[ \frac{2\sin x}{\cos^2 x} = \frac{2}{\cos x} \] ### Step 4: Cross multiply to eliminate the fractions Cross multiplying gives us: \[ 2\sin x \cdot \cos x = 2 \cdot \cos^2 x \] ### Step 5: Simplify the equation Dividing both sides by 2 (assuming \( \sin x \) and \( \cos x \) are not zero in the interval \( (0, \frac{\pi}{2}) \)): \[ \sin x \cdot \cos x = \cos^2 x \] ### Step 6: Rearranging the equation Rearranging gives: \[ \sin x = \cos x \] ### Step 7: Solve for \( x \) From \( \sin x = \cos x \), we can divide both sides by \( \cos x \) (which is non-zero in the interval): \[ \tan x = 1 \] Thus, \( x = \frac{\pi}{4} \). ### Final Solution The solution to the equation \( 2\tan^{-1}(\sin x) = \tan^{-1}(2 \sec x) \) in the interval \( 0 < x < \frac{\pi}{2} \) is: \[ x = \frac{\pi}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (b) (Long Answer Type Questions (II))|2 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions)|26 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (a) (Long Answer Type Questions )|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = pi/4 , x gt 0

Solve for x:2tan^(-1)(sin x)=tan^(-1)(2sec x),x!=(pi)/(2)

Solve the following differential equations : (dy)/(dx)+sec x.y=tanx(0 le x lt pi/2) .

tan^(-1)(secx+tanx),(-pi)/(2) lt x lt (pi)/(2)

Solve : tan^(-1)((cos x)/(1+sin x)) , -(pi)/(2) lt x lt (pi)/(2)

Solve the inequality: tan x lt 2

Prove the following inequalities : tan x gt x + x^(3)//3 "if " (0 lt x lt pi//2)

Solve the equation sec ^(2)2x=1-tan2x

Solve the equation (tan^(-)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4)

Solve the differential equation (cos ^(2) x ) (dy)/(dx) + y = tan x ( 0 le x lt (pi)/(2))

MODERN PUBLICATION-INVERSE - TRIGONOMETRIC FUNCTIONS-EXERCISE 2 (b) (Short Answer Type Questions)
  1. Solve the following equations : cos (tan^(-1) x ) = sin (cot^(-1)...

    Text Solution

    |

  2. If sin(cot^(-1)(x+1))=costan^(-1)x, then x=

    Text Solution

    |

  3. Solve the following equations : 2tan^(-1) (sin x) = tan^(-1) (2se...

    Text Solution

    |

  4. Solve the following equations : cos (sin^(-1) x) = 1/2

    Text Solution

    |

  5. Solve the following equations : tan^(-1) ((x-2)/(x-4)) +tan^(-1) (...

    Text Solution

    |

  6. Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = t...

    Text Solution

    |

  7. Solve for x : 3 sin^(-1) ((2x)/(1+x^(2))) - 4 cos^(-1) ((1-x^(2))...

    Text Solution

    |

  8. Express each of the following in the simplest form: tan^(-1){(cosx)...

    Text Solution

    |

  9. Write the following function in the simplest form: tan^(-1)((cosx-sinx...

    Text Solution

    |

  10. Write the following function in the simplest form: tan^(-1)((cosx-sinx...

    Text Solution

    |

  11. Write the following functions in the simplest form: tan^(-1){x/(a^2-x...

    Text Solution

    |

  12. Write the following function in the simplest form: tan^(-1)(sqrt(1+x^2...

    Text Solution

    |

  13. Write the following in the simplest form : tan ^(-1) ((sqrt(1-x^(...

    Text Solution

    |

  14. Prove that : tan^(-1) ((sqrt(1-x^(2)))/(1+x)) = 1/2 cos^(-1) x

    Text Solution

    |

  15. prove that 1/2tan^-1x=cos^-1xsqrt((1+sqrt(1+x^2))/(2sqrt(1+x^2))

    Text Solution

    |

  16. Prove that : tan^(-1) [ (sqrt(1+z) +sqrt(1-z))/(sqrt(1+z) -sqrt(1-z...

    Text Solution

    |

  17. tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

    Text Solution

    |

  18. Prove that : cot^(-1) ((sqrt(1+x) -sqrt(1-x))/(sqrt(1+x) +sqrt(1-x)...

    Text Solution

    |

  19. cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2

    Text Solution

    |

  20. If tan^(-1) x + tan^(-1) y - tan^(-1) z = 0 , then prove that : x...

    Text Solution

    |