Home
Class 12
MATHS
Solve the following equations : cos (...

Solve the following equations :
`cos (sin^(-1) x) = 1/2 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos(\sin^{-1} x) = \frac{1}{2} \), we can follow these steps: ### Step 1: Understand the Inverse Function The term \( \sin^{-1} x \) represents the angle \( \theta \) such that \( \sin \theta = x \). The range of \( \theta \) for \( \sin^{-1} x \) is from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \). ### Step 2: Rewrite the Equation Using the identity for cosine in terms of sine, we can rewrite: \[ \cos(\sin^{-1} x) = \sqrt{1 - \sin^2(\sin^{-1} x)} = \sqrt{1 - x^2} \] Thus, the equation becomes: \[ \sqrt{1 - x^2} = \frac{1}{2} \] ### Step 3: Square Both Sides To eliminate the square root, we square both sides: \[ 1 - x^2 = \left(\frac{1}{2}\right)^2 \] \[ 1 - x^2 = \frac{1}{4} \] ### Step 4: Solve for \( x^2 \) Rearranging the equation gives: \[ x^2 = 1 - \frac{1}{4} = \frac{3}{4} \] ### Step 5: Take the Square Root Taking the square root of both sides, we find: \[ x = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2} \] ### Step 6: Write the Final Answer Thus, the solutions to the equation \( \cos(\sin^{-1} x) = \frac{1}{2} \) are: \[ x = \frac{\sqrt{3}}{2} \quad \text{and} \quad x = -\frac{\sqrt{3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (b) (Long Answer Type Questions (II))|2 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions)|26 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (a) (Long Answer Type Questions )|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations : cos (tan^(-1) x ) = sin (cot^(-1). 3/4)

Solve the following equations/system of equations sin^(-1) x+sin^(-1)y=(2pi)/(3) & cos^(-1)x-cos^(-1)y=pi/3

Solve the following equation: sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the following equations : sin^(-1)(x^(2)-2x+3)+cos^(-1)(x^(2)-x)=(pi)/2

Solve the following equation for x:cos(tan^(-1)x)=sin((cot^(-1)3)/(4))tan(cos^(-1)x)=sin((cot^(-1)1)/(2))

Solve the following equations: (i) sin^(8)x - cos^(8)x=1 (ii) sin^(10)x - cot^(8)x=1

Solve the following inequations sin x+sqrt(3)cos x>=1

Solve the following equations: sin^(-1)(3x)/(5)+sin^(-1)(4x)/(5)=sin^(-1)xsin^(-1)6x+sin^(-1)6sqrt(3)x=(pi)/(2)

Solve the following equation: 2sin^(2)x+sqrt(3)cos x+1=0

Solve the following equations: sin[2cos^(-1){cot(2tan^(-1)x}]=0

MODERN PUBLICATION-INVERSE - TRIGONOMETRIC FUNCTIONS-EXERCISE 2 (b) (Short Answer Type Questions)
  1. If sin(cot^(-1)(x+1))=costan^(-1)x, then x=

    Text Solution

    |

  2. Solve the following equations : 2tan^(-1) (sin x) = tan^(-1) (2se...

    Text Solution

    |

  3. Solve the following equations : cos (sin^(-1) x) = 1/2

    Text Solution

    |

  4. Solve the following equations : tan^(-1) ((x-2)/(x-4)) +tan^(-1) (...

    Text Solution

    |

  5. Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = t...

    Text Solution

    |

  6. Solve for x : 3 sin^(-1) ((2x)/(1+x^(2))) - 4 cos^(-1) ((1-x^(2))...

    Text Solution

    |

  7. Express each of the following in the simplest form: tan^(-1){(cosx)...

    Text Solution

    |

  8. Write the following function in the simplest form: tan^(-1)((cosx-sinx...

    Text Solution

    |

  9. Write the following function in the simplest form: tan^(-1)((cosx-sinx...

    Text Solution

    |

  10. Write the following functions in the simplest form: tan^(-1){x/(a^2-x...

    Text Solution

    |

  11. Write the following function in the simplest form: tan^(-1)(sqrt(1+x^2...

    Text Solution

    |

  12. Write the following in the simplest form : tan ^(-1) ((sqrt(1-x^(...

    Text Solution

    |

  13. Prove that : tan^(-1) ((sqrt(1-x^(2)))/(1+x)) = 1/2 cos^(-1) x

    Text Solution

    |

  14. prove that 1/2tan^-1x=cos^-1xsqrt((1+sqrt(1+x^2))/(2sqrt(1+x^2))

    Text Solution

    |

  15. Prove that : tan^(-1) [ (sqrt(1+z) +sqrt(1-z))/(sqrt(1+z) -sqrt(1-z...

    Text Solution

    |

  16. tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

    Text Solution

    |

  17. Prove that : cot^(-1) ((sqrt(1+x) -sqrt(1-x))/(sqrt(1+x) +sqrt(1-x)...

    Text Solution

    |

  18. cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2

    Text Solution

    |

  19. If tan^(-1) x + tan^(-1) y - tan^(-1) z = 0 , then prove that : x...

    Text Solution

    |

  20. If (i) cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that : x^...

    Text Solution

    |