Home
Class 12
MATHS
Solve the following equations : tan^(...

Solve the following equations :
`tan^(-1) ((x-2)/(x-4)) +tan^(-1) ((x+2)/(x+4)) = pi/ 4 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1} \left( \frac{x-2}{x-4} \right) + \tan^{-1} \left( \frac{x+2}{x+4} \right) = \frac{\pi}{4}, \] we can use the formula for the sum of inverse tangents: \[ \tan^{-1} A + \tan^{-1} B = \tan^{-1} \left( \frac{A + B}{1 - AB} \right), \] provided that \(AB < 1\). ### Step 1: Identify A and B Let: \[ A = \frac{x-2}{x-4}, \quad B = \frac{x+2}{x+4}. \] ### Step 2: Apply the formula Using the formula, we have: \[ \tan^{-1} A + \tan^{-1} B = \tan^{-1} \left( \frac{A + B}{1 - AB} \right) = \frac{\pi}{4}. \] This implies: \[ \frac{A + B}{1 - AB} = 1. \] ### Step 3: Set up the equation This leads to the equation: \[ A + B = 1 - AB. \] ### Step 4: Calculate A + B Calculate \(A + B\): \[ A + B = \frac{x-2}{x-4} + \frac{x+2}{x+4}. \] Finding a common denominator: \[ A + B = \frac{(x-2)(x+4) + (x+2)(x-4)}{(x-4)(x+4)}. \] Expanding the numerator: \[ = \frac{(x^2 + 4x - 2x - 8) + (x^2 - 4x + 2x - 8)}{x^2 - 16} = \frac{2x^2 - 16}{x^2 - 16}. \] ### Step 5: Calculate AB Now calculate \(AB\): \[ AB = \left( \frac{x-2}{x-4} \right) \left( \frac{x+2}{x+4} \right) = \frac{(x-2)(x+2)}{(x-4)(x+4)} = \frac{x^2 - 4}{x^2 - 16}. \] ### Step 6: Substitute A + B and AB into the equation Substituting \(A + B\) and \(AB\) into the equation \(A + B = 1 - AB\): \[ \frac{2x^2 - 16}{x^2 - 16} = 1 - \frac{x^2 - 4}{x^2 - 16}. \] ### Step 7: Simplify the equation Cross-multiplying gives: \[ 2x^2 - 16 = (x^2 - 16) - (x^2 - 4) = -12. \] ### Step 8: Solve for x Now we have: \[ 2x^2 - 16 = -12 \implies 2x^2 = 4 \implies x^2 = 2. \] Taking the square root: \[ x = \pm \sqrt{2}. \] ### Final Solution Thus, the solutions to the equation are: \[ x = \sqrt{2} \quad \text{and} \quad x = -\sqrt{2}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (b) (Long Answer Type Questions (II))|2 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions)|26 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (a) (Long Answer Type Questions )|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = pi/4 , x gt 0

If tan^(-1)((x-3)/(x-4))+tan^(-1)((x+3)/(x+4))=(pi)/(4)

Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = tan^(-1) (8/79)

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve the following equations : 2tan^(-1) (sin x) = tan^(-1) (2sec x ,) 0 lt x lt pi/2

Solve for x:tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=(pi)/(4)

Solve : tan^(-1) ((x-1) /( x-2))-tan^(-1)((x+1)/(x+2))=(pi)/(4) ,

MODERN PUBLICATION-INVERSE - TRIGONOMETRIC FUNCTIONS-EXERCISE 2 (b) (Short Answer Type Questions)
  1. Solve the following equations : 2tan^(-1) (sin x) = tan^(-1) (2se...

    Text Solution

    |

  2. Solve the following equations : cos (sin^(-1) x) = 1/2

    Text Solution

    |

  3. Solve the following equations : tan^(-1) ((x-2)/(x-4)) +tan^(-1) (...

    Text Solution

    |

  4. Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = t...

    Text Solution

    |

  5. Solve for x : 3 sin^(-1) ((2x)/(1+x^(2))) - 4 cos^(-1) ((1-x^(2))...

    Text Solution

    |

  6. Express each of the following in the simplest form: tan^(-1){(cosx)...

    Text Solution

    |

  7. Write the following function in the simplest form: tan^(-1)((cosx-sinx...

    Text Solution

    |

  8. Write the following function in the simplest form: tan^(-1)((cosx-sinx...

    Text Solution

    |

  9. Write the following functions in the simplest form: tan^(-1){x/(a^2-x...

    Text Solution

    |

  10. Write the following function in the simplest form: tan^(-1)(sqrt(1+x^2...

    Text Solution

    |

  11. Write the following in the simplest form : tan ^(-1) ((sqrt(1-x^(...

    Text Solution

    |

  12. Prove that : tan^(-1) ((sqrt(1-x^(2)))/(1+x)) = 1/2 cos^(-1) x

    Text Solution

    |

  13. prove that 1/2tan^-1x=cos^-1xsqrt((1+sqrt(1+x^2))/(2sqrt(1+x^2))

    Text Solution

    |

  14. Prove that : tan^(-1) [ (sqrt(1+z) +sqrt(1-z))/(sqrt(1+z) -sqrt(1-z...

    Text Solution

    |

  15. tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

    Text Solution

    |

  16. Prove that : cot^(-1) ((sqrt(1+x) -sqrt(1-x))/(sqrt(1+x) +sqrt(1-x)...

    Text Solution

    |

  17. cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2

    Text Solution

    |

  18. If tan^(-1) x + tan^(-1) y - tan^(-1) z = 0 , then prove that : x...

    Text Solution

    |

  19. If (i) cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that : x^...

    Text Solution

    |

  20. Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^21)/(x^2+2)) ...

    Text Solution

    |