Home
Class 12
MATHS
Solve for x : 3 sin^(-1) ((2x)/(1+x...

Solve for x :
`3 sin^(-1) ((2x)/(1+x^(2))) - 4 cos^(-1) ((1-x^(2))/(1+x^(2))) +2 tan^(-1). ((2x)/(1-x^(2))) = pi/ 2 . `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ 3 \sin^{-1} \left( \frac{2x}{1+x^2} \right) - 4 \cos^{-1} \left( \frac{1-x^2}{1+x^2} \right) + 2 \tan^{-1} \left( \frac{2x}{1-x^2} \right) = \frac{\pi}{2}, \] we can start by using the identities for the inverse trigonometric functions. ### Step 1: Simplifying the Inverse Functions 1. **Recognize the identities:** - The expression \(\sin^{-1} \left( \frac{2x}{1+x^2} \right)\) can be rewritten using the double angle formula for tangent: \[ \sin^{-1} \left( \frac{2x}{1+x^2} \right) = 2 \tan^{-1}(x). \] - The expression \(\cos^{-1} \left( \frac{1-x^2}{1+x^2} \right)\) can also be rewritten: \[ \cos^{-1} \left( \frac{1-x^2}{1+x^2} \right) = 2 \tan^{-1}(x). \] - The expression \(\tan^{-1} \left( \frac{2x}{1-x^2} \right)\) is already in a suitable form: \[ \tan^{-1} \left( \frac{2x}{1-x^2} \right) = 2 \tan^{-1}(x). \] ### Step 2: Substitute the Identities Now substituting these identities into the original equation: \[ 3(2 \tan^{-1}(x)) - 4(2 \tan^{-1}(x)) + 2(2 \tan^{-1}(x)) = \frac{\pi}{2}. \] This simplifies to: \[ 6 \tan^{-1}(x) - 8 \tan^{-1}(x) + 4 \tan^{-1}(x) = \frac{\pi}{2}. \] ### Step 3: Combine Like Terms Combining the terms gives: \[ (6 - 8 + 4) \tan^{-1}(x) = \frac{\pi}{2}. \] This simplifies to: \[ 2 \tan^{-1}(x) = \frac{\pi}{2}. \] ### Step 4: Solve for \(\tan^{-1}(x)\) Dividing both sides by 2: \[ \tan^{-1}(x) = \frac{\pi}{4}. \] ### Step 5: Find \(x\) Taking the tangent of both sides, we find: \[ x = \tan\left(\frac{\pi}{4}\right) = 1. \] ### Conclusion Thus, the solution to the equation is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (b) (Long Answer Type Questions (II))|2 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions)|26 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (a) (Long Answer Type Questions )|3 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

(3 sin^(-1)) ((2x)/(1+x^2)) - (4 cos^(-1)) ((1-x^2)/(1 + x^2)) + (2 tan^(-1)) ((2x)/(1-x^2)) = π/3

Solve 3sin^(-1)((2x)/(1+x^(2)))-4cos^(-1)((1-x^(2))/(1+x^(2)))+2tan^(-1)((2x)/(1-x^(2)))=(pi)/(3)

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

If: 3 sin^(-1)((2x)/(1+x^(2))) - 4 cos^(-1)((1-x^(2))/(1+x^(2))) + 2 tan^(-1)((2x)/(1-x^(2)))=pi/3 , where |x| lt 1 , then: x=

Solve: cos^(-1) ((x^(2)-1)/(x^(2)+1))+ tan^(-1) ((2x)/(x^(2)-1)) = 2/3 pi .

tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=pi/3

Solve the following equation for x:3(sin^(-1)(2x))/(1+x^(2))-4(cos^(-1)(1-x^(2)))/(1+x^(2))+2(tan^(-1)(2x))/(1-x^(2))=(pi)/(3)

Solve for x, cos^(-1)((x^(2)-1)/(x^(2)+1))+tan^(-1)((-2x)/(1-x^(2)))=(2pi)/(3)

Solve for x : cos^(-1)((x^2-1)/(x^2+1))+1/2tan^(-1)((2x)/(1-x^2))=(2pi)/3

MODERN PUBLICATION-INVERSE - TRIGONOMETRIC FUNCTIONS-EXERCISE 2 (b) (Short Answer Type Questions)
  1. Solve the following equations : 2tan^(-1) (sin x) = tan^(-1) (2se...

    Text Solution

    |

  2. Solve the following equations : cos (sin^(-1) x) = 1/2

    Text Solution

    |

  3. Solve the following equations : tan^(-1) ((x-2)/(x-4)) +tan^(-1) (...

    Text Solution

    |

  4. Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = t...

    Text Solution

    |

  5. Solve for x : 3 sin^(-1) ((2x)/(1+x^(2))) - 4 cos^(-1) ((1-x^(2))...

    Text Solution

    |

  6. Express each of the following in the simplest form: tan^(-1){(cosx)...

    Text Solution

    |

  7. Write the following function in the simplest form: tan^(-1)((cosx-sinx...

    Text Solution

    |

  8. Write the following function in the simplest form: tan^(-1)((cosx-sinx...

    Text Solution

    |

  9. Write the following functions in the simplest form: tan^(-1){x/(a^2-x...

    Text Solution

    |

  10. Write the following function in the simplest form: tan^(-1)(sqrt(1+x^2...

    Text Solution

    |

  11. Write the following in the simplest form : tan ^(-1) ((sqrt(1-x^(...

    Text Solution

    |

  12. Prove that : tan^(-1) ((sqrt(1-x^(2)))/(1+x)) = 1/2 cos^(-1) x

    Text Solution

    |

  13. prove that 1/2tan^-1x=cos^-1xsqrt((1+sqrt(1+x^2))/(2sqrt(1+x^2))

    Text Solution

    |

  14. Prove that : tan^(-1) [ (sqrt(1+z) +sqrt(1-z))/(sqrt(1+z) -sqrt(1-z...

    Text Solution

    |

  15. tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

    Text Solution

    |

  16. Prove that : cot^(-1) ((sqrt(1+x) -sqrt(1-x))/(sqrt(1+x) +sqrt(1-x)...

    Text Solution

    |

  17. cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2

    Text Solution

    |

  18. If tan^(-1) x + tan^(-1) y - tan^(-1) z = 0 , then prove that : x...

    Text Solution

    |

  19. If (i) cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that : x^...

    Text Solution

    |

  20. Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^21)/(x^2+2)) ...

    Text Solution

    |