Home
Class 12
MATHS
The principal value of the expression ...

The principal value of the expression : `cos^(-1) [ cos (-680^(@))] ` is :

A

`(2pi)/9`

B

`(-2pi)/9`

C

`(34pi)/9`

D

`pi/9`

Text Solution

AI Generated Solution

The correct Answer is:
To find the principal value of the expression \( \cos^{-1} [ \cos (-680^\circ) ] \), we will follow these steps: ### Step 1: Simplify the angle First, we need to simplify the angle \(-680^\circ\). Since angles can be expressed in terms of their coterminal angles, we can add \(360^\circ\) until the angle is within the standard range of \(0^\circ\) to \(360^\circ\). \[ -680^\circ + 2 \times 360^\circ = -680^\circ + 720^\circ = 40^\circ \] ### Step 2: Evaluate the cosine Now we can evaluate the cosine of the simplified angle: \[ \cos(-680^\circ) = \cos(40^\circ) \] ### Step 3: Apply the inverse cosine function Next, we apply the inverse cosine function to the result from Step 2: \[ \cos^{-1} [ \cos(40^\circ) ] \] ### Step 4: Determine the principal value The principal value of \( \cos^{-1} [ \cos(x) ] \) is \( x \) when \( x \) is within the range \( [0, \pi] \) (or \( [0^\circ, 180^\circ] \)). Since \( 40^\circ \) is within this range, we have: \[ \cos^{-1} [ \cos(40^\circ) ] = 40^\circ \] ### Final Answer Thus, the principal value of the expression \( \cos^{-1} [ \cos (-680^\circ) ] \) is: \[ \boxed{40^\circ} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|10 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|6 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 2 (b) (Long Answer Type Questions (II))|2 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

The value of the expression cos 1^(@) cos 2^(@) …. Cos 179^(@) is

Find the value of the expression sin[cot^(-1){cos(tan^(1)1)}]

Find the principal value of [cos^(-1)cos(-680^(@))]

Write the principal value of cos^(-1)[cos(680^(@))]

Find the principal values of the following : cos^(-1) (-1/2)

Find the principal values of the following cos^(-1) (cos. (13pi)/6)

Find the principal value of the following (i) cos^(-1) (cos 3) (ii) cos^(-1) (cos 4) (iii) cos^(-1) (cos 15) (iv) cos^(-1) (cos 30) (v) cos^(-1) (cos 50) (vi) cos^(-1) (cos.(48pi)/(7))