Home
Class 12
MATHS
2 tan^(-1) x = sin^(-1) ((2x)/(1+x^(2)))...

` 2 tan^(-1) x = sin^(-1) ((2x)/(1+x^(2))) , 1 le x le 1 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \tan^{-1} x = \sin^{-1} \left( \frac{2x}{1+x^2} \right) \) for \( -1 \leq x \leq 1 \), we can follow these steps: ### Step 1: Understand the relationship between \( \tan^{-1} \) and \( \sin^{-1} \) We know from trigonometric identities that: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] If we let \( \theta = \tan^{-1}(x) \), then \( \tan(\theta) = x \). Thus, we can express \( 2 \tan^{-1}(x) \) as: \[ \tan(2\tan^{-1}(x)) = \frac{2x}{1 - x^2} \] ### Step 2: Set up the equation From the above relationship, we can rewrite our original equation: \[ \tan(2\tan^{-1}(x)) = \frac{2x}{1 - x^2} \] This means: \[ \sin^{-1}\left( \frac{2x}{1+x^2} \right) = \tan(2\tan^{-1}(x)) \] ### Step 3: Use the identity for \( \sin^{-1} \) We know that: \[ \sin(\sin^{-1}(y)) = y \] Thus, we can equate: \[ \sin(2\tan^{-1}(x)) = \frac{2x}{1+x^2} \] ### Step 4: Use the double angle formula for sine The double angle formula states: \[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) \] Using \( \theta = \tan^{-1}(x) \): - \( \sin(\theta) = \frac{x}{\sqrt{1+x^2}} \) - \( \cos(\theta) = \frac{1}{\sqrt{1+x^2}} \) Thus: \[ \sin(2\tan^{-1}(x)) = 2 \cdot \frac{x}{\sqrt{1+x^2}} \cdot \frac{1}{\sqrt{1+x^2}} = \frac{2x}{1+x^2} \] ### Step 5: Verify the equality We see that: \[ \sin(2\tan^{-1}(x)) = \frac{2x}{1+x^2} \] This confirms that our original equation holds true. ### Step 6: Conclusion Since the equation holds true for all \( x \) in the interval \( -1 \leq x \leq 1 \), we conclude that the solution is valid for this entire range.
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (D. Very Short Answer Types Questions)|22 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise NCERT - FILE (Question from NCERT Book) (Exercise 2.1)|14 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

If y = sin^(-1) x + sin^(-1) sqrt(1 - x^(2)), - 1 le x le 1," then " (dy)/(dx) is

Prove that : 2sin^(-1). ((2x )/(1+x^(2))), -1 le x lt 1

If |x| le 1 , then 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2))) is equal to

It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=(cos^(-1)t)^(2)+(sin^(-1)t)^(2) where t in [0, (1)/(sqrt(2))] , and sin^(-1)x+cos^(-1)x=(pi)/(2) for -1 le x le 1 and tan^(-1)x +cot^(-1)x=(pi)/(2) for x in R . The interval in which A lies is :

Find the smallest and the largest values of tan^(-1) ((1 - x)/(1 + x)), 0 le x le 1

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?