Home
Class 12
MATHS
sin^(-1) x + cos^(-1) x = pi/4...

`sin^(-1) x + cos^(-1) x = pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} x + \cos^{-1} x = \frac{\pi}{4} \), we can follow these steps: ### Step 1: Understand the Inverse Trigonometric Functions Recall that for any \( x \) in the domain of the functions, the following identity holds: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] This identity is true for all \( x \) in the interval \([-1, 1]\). ### Step 2: Analyze the Given Equation We have: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{4} \] From the identity we established, we know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] This means that the left-hand side equals \( \frac{\pi}{2} \), which is not equal to \( \frac{\pi}{4} \). ### Step 3: Conclusion Since \( \frac{\pi}{2} \neq \frac{\pi}{4} \), the original statement \( \sin^{-1} x + \cos^{-1} x = \frac{\pi}{4} \) is **false**. ### Final Answer The statement \( \sin^{-1} x + \cos^{-1} x = \frac{\pi}{4} \) is false. ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (D. Very Short Answer Types Questions)|22 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise NCERT - FILE (Question from NCERT Book) (Exercise 2.1)|14 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

if 4sin^(-1)x + cos^(-1)x =pi , then: x=…..

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

If sin^(-1)x - cos^(-1)x=pi/6 , then: x=…..

If 4 sin^(-1)x + cos^(-1)x=pi , then: x=