Home
Class 12
MATHS
Is sec^(-1) (-x) = pi - sec^(-1) x , |x...

Is ` sec^(-1) (-x) = pi - sec^(-1) x , |x| ge 1 `?

Text Solution

AI Generated Solution

The correct Answer is:
To prove the statement \( \sec^{-1}(-x) = \pi - \sec^{-1}(x) \) for \( |x| \geq 1 \), we will follow these steps: ### Step 1: Understanding the Definition of \( \sec^{-1}(x) \) The function \( \sec^{-1}(x) \) is defined for \( |x| \geq 1 \). The range of \( \sec^{-1}(x) \) is \( [0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi] \). ### Step 2: Analyzing \( \sec^{-1}(-x) \) For \( x \geq 1 \), we have \( -x \leq -1 \). Thus, \( \sec^{-1}(-x) \) is defined and we need to find its value. ### Step 3: Using the Property of the Secant Function Recall that: \[ \sec(\theta) = \frac{1}{\cos(\theta)} \] If \( \sec^{-1}(x) = \theta \), then \( \sec(\theta) = x \). For \( \sec^{-1}(-x) \), we have: \[ \sec(\phi) = -x \implies \phi = \sec^{-1}(-x) \] ### Step 4: Relating Angles From the properties of the secant function, we know: \[ \sec(\pi - \theta) = -\sec(\theta) \] This implies: \[ \sec(\phi) = -x \implies \phi = \pi - \theta \] where \( \theta = \sec^{-1}(x) \). ### Step 5: Conclusion Thus, we can conclude: \[ \sec^{-1}(-x) = \pi - \sec^{-1}(x) \] for \( |x| \geq 1 \). ### Final Statement Therefore, the statement \( \sec^{-1}(-x) = \pi - \sec^{-1}(x) \) is true for \( |x| \geq 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (D. Very Short Answer Types Questions)|22 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise NCERT - FILE (Question from NCERT Book) (Exercise 2.1)|14 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

x sec^(-1)x

sec^(-1)(x/a)

Find the maximum value of (sec^(-1) x) (cosec^(-1) x), x ge 1

Prove that : cos(sec^(-1) x+ cosec^(-1) x) =0, |x| ge 1

solve the following equation sec^(-1).(x)/(a) - sec^(-1).(x)/(b) = sec^(-1) b - sec^(-1) a, a ge 1, b ge 1, a!= b

Prove that tan^(-1).(1)/(sqrt(x^(2) -1)) = (pi)/(2) - sec^(-1) x, x gt 1

Write down the value of "cosec"^(-1)x +sec^(-1) x , when x ge 1 .

if (sec ^ (- 1) x CSC ^ (- 1) x)

Range of sec^(-1)x is

Domain of sec^(-1)x is