Home
Class 12
MATHS
Is cot^(-1) (-x) = pi - cot^(-1) x , x...

Is ` cot^(-1) (-x) = pi - cot^(-1) x , x in R `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot^{-1}(-x) = \pi - \cot^{-1}(x) \) for \( x \in \mathbb{R} \), we can follow these steps: ### Step-by-Step Solution: 1. **Understanding the Left-Hand Side (LHS)**: We start with the left-hand side of the equation: \[ \text{LHS} = \cot^{-1}(-x) \] Let's denote \( \cot^{-1}(-x) \) as \( \theta \). Thus, we have: \[ \theta = \cot^{-1}(-x) \] This implies: \[ \cot(\theta) = -x \] 2. **Analyzing the Quadrants**: The cotangent function is negative in the second and fourth quadrants. Since the range of \( \cot^{-1}(y) \) is \( (0, \pi) \), \( \theta \) must be in the second quadrant when \( -x \) is positive (i.e., \( x < 0 \)). In this case, we can express \( \theta \) as: \[ \theta = \pi - \phi \quad \text{where } \phi = \cot^{-1}(x) \] Therefore, we can write: \[ \cot(\theta) = \cot(\pi - \phi) = -\cot(\phi) \] 3. **Relating \( \theta \) and \( \phi \)**: Since \( \cot(\phi) = x \), we can substitute this into our equation: \[ -\cot(\phi) = -x \] This confirms that: \[ \theta = \pi - \cot^{-1}(x) \] 4. **Conclusion**: Thus, we have shown that: \[ \cot^{-1}(-x) = \pi - \cot^{-1}(x) \] for all \( x \in \mathbb{R} \). ### Final Answer: The statement \( \cot^{-1}(-x) = \pi - \cot^{-1}(x) \) is **true** for all \( x \in \mathbb{R} \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (D. Very Short Answer Types Questions)|22 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise NCERT - FILE (Question from NCERT Book) (Exercise 2.1)|14 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

sin^-1(-x) = -sin^-1(x); cos^-1(-x) = pi - cos^-1(x); tan^-1(-x) = -tan^-1(x); cot^-1(-x) = pi - cot^-1(x); sec^-1(-x) = pi - sec^-1(x); cosec^-1(-x) = -cosec^-1(X)

If: cot^(-1)alpha + cot^(-1)beta = cot^(-1) x , then: x=

tan^(-1)(cot x)+cot^(-1)(tan x)

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

If cot^(-1)x + cot^(-1)y + cot^(-1)z = pi , prove that xy + yz + zx = 1 .

The solution set of inequality ( cot^(-1) x) (tan^(-1) x) + (2 - pi/2) cot^(-1) x - 3 tan^(-1) x - 3 ( 2 - pi/2) gt 0 , is

Find the minimum value of the function f(x) = (pi^(2))/(16 cot^(-1) (-x)) - cot^(-1) x

Evaluate cot (tan^(-1) (2x) + cot^(-1) (2x))