Home
Class 12
MATHS
tan^(-1) . 3/5 +tan^(-1) . 1/4 = pi/2...

`tan^(-1) . 3/5 +tan^(-1) . 1/4 = pi/2 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1} \left( \frac{3}{5} \right) + \tan^{-1} \left( \frac{1}{4} \right) = \frac{\pi}{2} \), we can use the formula for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \] provided that \( ab < 1 \). ### Step-by-Step Solution: 1. **Identify \( a \) and \( b \)**: - Let \( a = \frac{3}{5} \) and \( b = \frac{1}{4} \). 2. **Calculate \( ab \)**: \[ ab = \left( \frac{3}{5} \right) \left( \frac{1}{4} \right) = \frac{3}{20} \] Since \( \frac{3}{20} < 1 \), we can use the formula. 3. **Apply the formula**: \[ \tan^{-1} \left( \frac{3}{5} \right) + \tan^{-1} \left( \frac{1}{4} \right) = \tan^{-1} \left( \frac{\frac{3}{5} + \frac{1}{4}}{1 - \frac{3}{5} \cdot \frac{1}{4}} \right) \] 4. **Find the numerator**: - To add \( \frac{3}{5} \) and \( \frac{1}{4} \), we need a common denominator: \[ \text{LCM of 5 and 4 is 20.} \] \[ \frac{3}{5} = \frac{12}{20}, \quad \frac{1}{4} = \frac{5}{20} \] \[ \text{Numerator: } 12 + 5 = 17 \] 5. **Find the denominator**: \[ 1 - ab = 1 - \frac{3}{20} = \frac{20 - 3}{20} = \frac{17}{20} \] 6. **Combine the results**: \[ \tan^{-1} \left( \frac{17/20}{17/20} \right) = \tan^{-1}(1) \] 7. **Evaluate \( \tan^{-1}(1) \)**: \[ \tan^{-1}(1) = \frac{\pi}{4} \] 8. **Conclusion**: Since \( \tan^{-1}(1) \) is not equal to \( \frac{\pi}{2} \), the statement is false. ### Final Result: \[ \tan^{-1} \left( \frac{3}{5} \right) + \tan^{-1} \left( \frac{1}{4} \right) \neq \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (D. Very Short Answer Types Questions)|22 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise NCERT - FILE (Question from NCERT Book) (Exercise 2.1)|14 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1) . 3/5 +tan^(-1). 1/4 = pi/4

Prove that tan ^(-1). 3/4+ tan^(-1) . 3/5 - tan^(-1) . 8/19 = pi/4

Prove that tan^(-1). 1/2 + tan^(-1) . 1/5 + tan^(-1). 1/8 = pi/4

Prove that 4 tan^(-1) . 1/5 - tan^(-1) . 1/70 + tan^(-1) . 1/99 = pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that tan^(-1) 2 + tan^(-1) 3 = (3pi)/4

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

If tan^(-1) 1/2 + tan^(-1) a = pi/4 then a = ______.

Prove that tan^(-1)(3/5)+tan^(-1)(1/4)=(pi)/(4)