Home
Class 12
MATHS
Find the principal values of the foll...

Find the principal values of the following :
`sec^(-1) (2/(sqrt(3)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the principal value of \( \sec^{-1} \left( \frac{2}{\sqrt{3}} \right) \), we will follow these steps: ### Step 1: Understand the Definition The function \( \sec^{-1}(x) \) is the inverse of the secant function. The domain of \( \sec^{-1}(x) \) is \( (-\infty, -1] \cup [1, \infty) \) and the range is \( [0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi] \). ### Step 2: Set Up the Equation Let \( y = \sec^{-1} \left( \frac{2}{\sqrt{3}} \right) \). By the definition of the inverse secant function, we have: \[ \sec(y) = \frac{2}{\sqrt{3}} \] ### Step 3: Convert to Cosine Since \( \sec(y) = \frac{1}{\cos(y)} \), we can write: \[ \frac{1}{\cos(y)} = \frac{2}{\sqrt{3}} \] This implies: \[ \cos(y) = \frac{\sqrt{3}}{2} \] ### Step 4: Find the Angle Now, we need to find the angle \( y \) such that: \[ \cos(y) = \frac{\sqrt{3}}{2} \] The angle \( y \) that satisfies this equation in the range of \( [0, \pi] \) is: \[ y = \frac{\pi}{6} \] ### Step 5: Conclusion Thus, the principal value of \( \sec^{-1} \left( \frac{2}{\sqrt{3}} \right) \) is: \[ \sec^{-1} \left( \frac{2}{\sqrt{3}} \right) = \frac{\pi}{6} \] ### Final Answer: \[ \sec^{-1} \left( \frac{2}{\sqrt{3}} \right) = \frac{\pi}{6} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise NCERT - FILE (Question from NCERT Book) (Exercise 2.1)|14 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise NCERT - FILE (Question from NCERT Book) (Exercise 2.2)|21 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|6 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Find the principal values of the following : "cosec"^(-1) (-sqrt(2))

Find the principal values of the following : sin^(-1) (-(sqrt(3))/2)

Find the principal values of the following : sin^(-1)(1/(sqrt (2)))

Find the principal values of the following : tan ^(-1) (-sqrt(3))

Find the principal values of the following : (i) sin^(-1)(sqrt(3)) (ii) cot^(-1)(-sqrt(3)) (iii) cos^(-1)(-1(1)/(2)) (iv) sec^(-1)(-(2)/sqrt(3)) (v) tan^(-1)(-1) (vi) cosec ^(-1)(-1) .

Find the principal values of each of the following: sec^(-1)(-sqrt(2))( ii) sec^(-1)(2)

Find the principal value of each of the following : cos^(-1)(-(sqrt(3))/(2))( ii) cos^(-1)(-(1)/(sqrt(2)))

Find the principal values of the following : cos^(-1)(-1/sqrt(2))

Find the principal values of the following : cos^(-1)(-1/sqrt(2))

Find the principal values of the following : tan^(-1) (-sqrt(3))