Home
Class 12
MATHS
Solve : 3 tan^(-1) (1/(2+sqrt(3)))-tan^...

Solve : ` 3 tan^(-1) (1/(2+sqrt(3)))-tan^(-1)(1/x) = tan^(-1) (1/3)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise COMPLETITION FILE (Questions from JEE Main)|7 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Exercise|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)((1)/(sqrt(3)))

tan^(-1) (1/(sqrt3))

3(tan^(-1)1)/(2+sqrt(3))-(tan^(-1)1)/(2)=(tan^(-1)1)/(3)

Prove that 3tan^(-1)((1)/(2+sqrt(3)))-tan^(-1)((1)/(2))=tan^(-1)((1)/(3))

If 3tan^(-1)(2-sqrt(3))-tan^(-1)(x)=tan^(-1)((1)/(3)) then x=

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

If 3tan^(-1)((1)/(2+sqrt(3)))-(tan^(-1)1)/(x)=(tan^(-1)1)/(3) then x is equal to 1(b)2(c)3(d)sqrt(2)

tan^(-1)3-tan^(-1)2=tan^(-1)(1/7)