Home
Class 12
MATHS
Show that :(i) sin^(-1) [ sin. (3pi)/4...

Show that :(i) ` sin^(-1) [ sin. (3pi)/4] != (3pi)/4`
(ii) `tan^(-1) [ tan. (5pi)/6] != (5pi)/6` . What is its value ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems, we will analyze each part step by step. ### Part (i): Show that \( \sin^{-1} \left( \sin \left( \frac{3\pi}{4} \right) \right) \neq \frac{3\pi}{4} \) **Step 1: Understand the range of the inverse sine function.** The function \( \sin^{-1}(x) \) has a range of \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \). **Hint:** Remember that inverse trigonometric functions return values within a specific range. **Step 2: Calculate \( \sin \left( \frac{3\pi}{4} \right) \).** Using the sine function, we find: \[ \sin \left( \frac{3\pi}{4} \right) = \sin \left( \pi - \frac{\pi}{4} \right) = \sin \left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} \] **Hint:** Use the identity \( \sin(\pi - x) = \sin(x) \). **Step 3: Apply the inverse sine function.** Now, we need to find: \[ \sin^{-1} \left( \sin \left( \frac{3\pi}{4} \right) \right) = \sin^{-1} \left( \frac{\sqrt{2}}{2} \right) \] Since \( \frac{\sqrt{2}}{2} \) corresponds to \( \frac{\pi}{4} \) in the range of \( \sin^{-1} \), we have: \[ \sin^{-1} \left( \frac{\sqrt{2}}{2} \right) = \frac{\pi}{4} \] **Hint:** The inverse sine function returns the angle in its defined range. **Step 4: Conclusion.** Thus, we conclude: \[ \sin^{-1} \left( \sin \left( \frac{3\pi}{4} \right) \right) = \frac{\pi}{4} \neq \frac{3\pi}{4} \] ### Part (ii): Show that \( \tan^{-1} \left( \tan \left( \frac{5\pi}{6} \right) \right) \neq \frac{5\pi}{6} \) **Step 1: Understand the range of the inverse tangent function.** The function \( \tan^{-1}(x) \) has a range of \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \). **Hint:** Similar to sine, the range of the inverse tangent function is limited. **Step 2: Calculate \( \tan \left( \frac{5\pi}{6} \right) \).** Using the tangent function, we find: \[ \tan \left( \frac{5\pi}{6} \right) = \tan \left( \pi - \frac{\pi}{6} \right) = -\tan \left( \frac{\pi}{6} \right) = -\frac{1}{\sqrt{3}} \] **Hint:** Use the identity \( \tan(\pi - x) = -\tan(x) \). **Step 3: Apply the inverse tangent function.** Now, we need to find: \[ \tan^{-1} \left( \tan \left( \frac{5\pi}{6} \right) \right) = \tan^{-1} \left( -\frac{1}{\sqrt{3}} \right) \] The angle corresponding to \( -\frac{1}{\sqrt{3}} \) in the range of \( \tan^{-1} \) is: \[ \tan^{-1} \left( -\frac{1}{\sqrt{3}} \right) = -\frac{\pi}{6} \] **Hint:** The inverse tangent function gives the angle in its defined range. **Step 4: Conclusion.** Thus, we conclude: \[ \tan^{-1} \left( \tan \left( \frac{5\pi}{6} \right) \right) = -\frac{\pi}{6} \neq \frac{5\pi}{6} \] ### Final Answers: (i) \( \sin^{-1} \left( \sin \left( \frac{3\pi}{4} \right) \right) = \frac{\pi}{4} \) (ii) \( \tan^{-1} \left( \tan \left( \frac{5\pi}{6} \right) \right) = -\frac{\pi}{6} \)
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise COMPLETITION FILE (Questions from JEE Main)|7 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Exercise|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of: i) sin ^(-1)(sin (3pi)/5) , ii) cos^(-1)(cos(13pi)/6) , iii) tan^(-1)(tan (7pi)/6) .

Let theta = tan^(-1) ( tan . (5pi)/4) " and " phi = tan^(-1) ( - tan . (2pi)/3) then

Find the value of: i) sin^(-1)(sin (2pi)/3)) , ii) cos^(-1)(cos(7pi)/6) , iii) tan^(-1)(tan(3pi)/4)

i) Show that sin^(-1){sin((3pi)/(4))} ne (3pi)/4 and find its value. ii) Show that cos^(-1){cos(-pi/3)} ne -pi/3 and find its value. iii) Show that tan^(-1){tan((5pi)/6)}ne (5pi)/6 and find its value.

Find the value of : (1) sin^(-1)(sin.(5pi)/(6)) (2) cos^(-1)(cos.(13pi)/(6)) (3) tan^(-1)(tan.(7pi)/(6))

Let tan^(-1) ( tan. (5pi)/(4))=alpha, tan^(-1) (-tan. (2pi)/(3))=beta , then

Evaluate the following: sin^(-1)(sin(pi)/(4)) (ii) cos^(-1)(cos2(pi)/(3))tan^(-1)(tan(pi)/(3))

Show that sin ^ (- 1) ((sin (3 pi)) / (7)) + cos ^ (- 1) ((cos (46 pi)) / (7)) + tan ^ (- 1) (- (tan (13 pi)) / (8)) + cot ^ (- 1) (cot (- (19 pi) / (8))) = (13 pi) / (7)

sin ((pi) / (5)) sin ((2 pi) / (5)) sin ((3 pi) / (5)) sin ((4 pi) / (5)) =

The value of sin ""(pi)/(16) sin ""(3pi)/(16) sin ""(5pi)/(16) sin ""(7pi)/(16) is