Home
Class 12
MATHS
If sec^(-1)(x) +"cosec"^(-1) (1/3) = pi/...

If `sec^(-1)(x) +"cosec"^(-1) (1/3) = pi/2 ` , then find x .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sec^{-1}(x) + \csc^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{2} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sec^{-1}(x) + \csc^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{2} \] We can isolate \( \sec^{-1}(x) \): \[ \sec^{-1}(x) = \frac{\pi}{2} - \csc^{-1}\left(\frac{1}{3}\right) \] ### Step 2: Use the complementary angle identity Using the identity \( \sec\left(\frac{\pi}{2} - \theta\right) = \csc(\theta) \), we can rewrite the right-hand side: \[ \sec^{-1}(x) = \csc\left(\csc^{-1}\left(\frac{1}{3}\right)\right) \] ### Step 3: Evaluate \( \csc\left(\csc^{-1}\left(\frac{1}{3}\right)\right) \) The value of \( \csc\left(\csc^{-1}\left(\frac{1}{3}\right)\right) \) is simply \( \frac{1}{3} \) because the cosecant function and its inverse cancel each other out: \[ \sec^{-1}(x) = \frac{1}{3} \] ### Step 4: Convert to secant form Now, we can convert this back to the secant function: \[ x = \sec\left(\frac{1}{3}\right) \] ### Step 5: Find the value of \( x \) To find \( x \), we need to compute \( \sec\left(\frac{1}{3}\right) \): \[ x = \frac{1}{\cos\left(\frac{1}{3}\right)} \] ### Conclusion Thus, the value of \( x \) is: \[ x = \sec\left(\csc^{-1}\left(\frac{1}{3}\right)\right) = \frac{1}{\cos\left(\frac{1}{3}\right)} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise COMPLETITION FILE (Questions from JEE Main)|7 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Revision Exercise|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

If sec^(-1)(2) +"cosec"^(-1) (y) = pi/2 , then find y .

sin(sec^(-1)x+"cosec"^(-1)x)

If sin^(-1) . (x)/(5) +cosec^(-1). (5/3)=pi/2 , then x=

Sove sec^(-1) x gt cosec^(-1) x

sec^(-1)x + "cosec"^(-1) x ___________

If sec^(-1) x = cosec^(-1) y , then find the value of cos^(-1) . 1/x + cos ^(-1) . 1/y .

If sec^(-1) x = cosec^(-1) y , then find the value of cos^(-1).(1)/(x) + cos^(-1).(1)/(y)

If cosec^(-1)x+cosec^(-1)y+cosec^(-1)z=-(3pi)/(2),then x/y+y/z+z/x=

Is sec^(-1) (-x) = pi - sec^(-1) x , |x| ge 1 ?