Home
Class 12
MATHS
Is cos^(-1) (-x) = pi - cos^(-1) x , x i...

Is `cos^(-1) (-x) = pi - cos^(-1) x , x in [-1,1] ` ?

Text Solution

Verified by Experts

The correct Answer is:
True
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise COMPLETITION FILE (Questions from JEE Main)|7 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Revision Exercise|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)) , then the value of a + b pi is

Let cos^(-1)(4x^(3)-3x)=a+b cos^(-1)x If x in[-(1)/(2),-1], then a+b pi=

If 0

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , then

sin^-1(-x) = -sin^-1(x); cos^-1(-x) = pi - cos^-1(x); tan^-1(-x) = -tan^-1(x); cot^-1(-x) = pi - cot^-1(x); sec^-1(-x) = pi - sec^-1(x); cosec^-1(-x) = -cosec^-1(X)

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If 4 sin^(-1)x + cos^(-1)x=pi , then: x=

If sin^(-1)x - cos^(-1)x=pi/6 , then: x=…..

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1